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Extra lecture on modelling

• This lecture covers general theory of modelling and effect parameterisation
(not specific to survival analysis).

• It will cover

– Categorical and continuous effects
– Main effects model: Interpretation and tests of main effects
– Interaction models: Interpretation and tests of interaction effects
– Parameterisation of interaction effects to obtain the group comparison of

interest

• As illustrative example, we will use the Poisson regression model for the
all-cause mortality rate, assuming constant (average) rates over time. So we
will ignore time for now.
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Categorical exposure variables

• We will use the melanoma data set investigating age differences in all-cause
mortality. The data are stset on surv mm and status=1,2.

• Age at diagnosis is measured in years in the variable age.

• The variable age3 (created below) has 3 levels. Here are the crude rates and
HRs.

. egen age3=cut(age),at(0,60,75,100)

Age age3 Rate/1000py HR

0-59 0 32.8 1.0
60-74 60 81.8 81.8/32.8=2.49
75+ 75 191.4 191.4/32.8=5.84
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• To include age3 in regression commands we need to use indicator variables
for the 3 levels.

age3 X1 X2 X3

0 1 0 0
60 0 1 0
75 0 0 1

• We create dummy variables X1, X2, X3 for exposure age3.

. tabulate age3, generate(X)

• We fit a Poisson regression model, and set exposure level 0-59 as reference by
omitting X1 from the model.
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. stset surv_mm, failure(status==1,2) scale(12)

. poisson _d X2 X3, exposure(surv_mm) irr

_d | IRR [95% Conf. Interval]

-------------+------------------------------

X2 | 2.494544 2.294322 2.712240

X3 | 5.835393 5.335520 6.382098

_cons | .0027329 .0025756 .0028997

ln(surv_mm) | 1

• The variable (X1) that indicates the category with the lowest age (0-59) is
omitted, meaning this is the reference category.

• The irr option will exponentiate the parameters to rate ratios.

• Note that Stata will display IRR even though we have estimated a hazard
ratio for all-cause mortality.
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• In terms of the parameters

ln(λ) = β0 + β2X2 + β3X3

age X ln(rate) rate

0-59 X1 β0 exp(β0)
60-74 X2 β0 + β2 exp(β0 + β2) = exp(β0) exp(β2)
75+ X3 β0 + β3 exp(β0 + β3) = exp(β0) exp(β3)

IRRX2/X1
= exp(β2) =

exp(β0) exp(β2)

exp(β0)

IRRX3/X1
= exp(β3) =

exp(β0) exp(β3)

exp(β0)
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Automatic generation of indicators using factor variables

. poisson _d i.age3, exposure(surv_mm) irr

-------------------------------------------

_d | IRR [95% Conf. Interval]

--------+----------------------------------

age3 |

60 | 2.494544 2.294322 2.712240

75 | 5.835393 5.33552 6.382098

_cons | .0027329 .0025756 .0028997

• i. tells Stata that age3 should be treated as a categorical variable

• The baseline is, by default, the first level (0-59), but this can be changed to
(say) the third level (75+) with

. poisson _d ib75.age3, exposure(surv_mm) irr
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Metric (continuous) exposure variables

• The effect of age on the mortality rate, when age is measured as a
continuous variable can be estimated like this:

. poisson _d age , exposure(surv_mm) irr

-------------------------------------------

_d | IRR [95% Conf. Interval]

-------+-----------------------------------

age | 1.048671 1.04609 1.051258

• For each 1 unit increase in age, the mortality rate is increased by 4.9%.

• This model makes the strong assumption of linearity of the effect, which may
not be plausible.
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• A 1 unit increase may not be clinically relevant. We may want to rescale the
continuous variable.

• To get the HR for an increase of, say, 10-year intervals:

. gen age10=age/10

. poisson _d age10, exposure(surv_mm) irr

--------------------------------------------

_d | IRR [95% Conf. Interval]

----------+---------------------------------

age10 | 1.608398 1.56925 1.648522

• The estimated IRR is 1.04867110 = 1.6084. That is, for each 10 unit increase
in age, we estimate that the mortality rate is increased by 61%.

• Again, this model makes the assumption on linearity of the effect.
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The main effects model — constant effect over strata

• If the true effect of exposure does not vary across strata of another variable
we can use a main effects model.

• For example, if the effect of age is the same in both sexes, we can estimate
an age effect that is the same for both men and women.

• Thus, if the estimates of age differ only randomly over sex level, we can
consider a model in which the true effect of age is constant over sex, i.e. no
interaction.

• This allows us to combine the information from different strata to yield a
single estimate of exposure effect.

• This combined estimate of the effect we call the main effect, which is then
controlled for the stratifying (confounding) variable(s).
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• The effect of exposure is assumed to be the same in all levels of other
variables in a main effects model.

• Statistical tests for the presence of confounding are not available, although
there are statistical tests for effect modification.
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Main effects model using Poisson regression

. poisson _d ib1.sex ib0.age3, exposure(surv_mm) irr baselevels

------------------------------------------------------------------

_d | IRR z P>|z| [95% conf. interval]

-------------+----------------------------------------------------

sex |

Male | 1 (base)

Female | .6140348 -13.36 0.000 .5716519 .6595599

|

age3 |

0 | 1 (base)

60 | 2.499009 21.45 0.000 2.298428 2.717096

75 | 6.184747 39.69 0.000 5.652568 6.767029

|

_cons | .0034875 -165.36 0.000 .0032612 .0037294

• The poisson regression command makes no distinction between the exposure
variable and the control variable.
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• The first hazard ratio reported is the effect of sex controlled for age3, and
the next two are the effects of age3 controlled for sex.

• The p-value of the parameter for sex (HR=0.614) is <0.001. This means that
there is a statistically significant association between sex and all-cause
mortality, when adjusting for age.

• To test the effect of age, we need to test both age parameters jointly.

. testparm 60.age3 75.age3

( 1) [_d]60.age3 = 0

( 2) [_d]75.age3 = 0

chi2( 2) = 1586.33

Prob > chi2 = 0.0000

• The effect of age is statistically significant (p-value<0.001) when adjusting
for sex.
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Models and parameters in Poisson regression

• In the Poisson regression model we estimated 4 parameters. One parameter
(the intercept) is a log rate and the other three are log hazard ratios.

• The model is ln(λ) = β0 + β1female+ β2age60+ β3age75

• Note that female, age60 and age75 are dummy variables coded 0/1 (similar
to X1, X2, X3).

• The parameters are

exp(β0) = rate at reference level of all covariates, i.e. men, 0-59 years

exp(β1) = rate ratio (comparing women vs men)

exp(β2) = rate ratio (comparing 60-74 vs 0-59)

exp(β3) = rate ratio (comparing 75+ vs 0-59)
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Parameters estimates with and without the irr option

. poisson _d ib0.female ib0.age3, exposure(surv_mm)

_d | Coef. [95% Conf. Interval]

-------------+--------------------------------------

Female | -.4877037 -.5592251 -.4161824

|

60 | .9158944 .8322253 .9995635

75 | 1.822086 1.73211 1.912062

_cons | -5.658582 -5.725652 -5.591511

. poisson _d ib0.female ib0.age3, exposure(surv_mm) irr

_d | IRR [95% Conf. Interval]

-------------+-------------------------------------

Female | .6140348 .5716519 .6595599

|

60 | 2.499009 2.298428 2.717096

75 | 6.184747 5.652568 6.767029

_cons | .0034875 .0032612 .0037294

• The irr option exponentiates the coefficients.
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• From the model, the estimated rate for each combination of explanatory
variables can be formulated as a function of the baseline rate λ and the three
incidence rate ratios. The baseline is the reference group of all variables
(men, 0-59 years).

• The model is ln(λ) = β0 + β1female+ β2age60+ β3age75

• Which on the rate scale is λ = exp(β0 + β1female+ β2age60+ β3age75)

• These are the rates, λ:

female=0 (men) female=1 (women)
age=0-59 exp(β0) exp(β0 + β1)

age=60-74 exp(β0 + β2) exp(β0 + β1 + β2)

age=75+ exp(β0 + β3) exp(β0 + β1 + β3)
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• The estimated incidence rate for men 0-59y (ref group) is
exp(−5.658582) = 0.00349 events/person-year.

• The estimated incidence rate for women 60-74y is exp(β0 + β1 + β2) =
exp(β0)× exp(β1)× exp(β2) =
0.0034875× 0.6140348× 2.499009 = 0.00535 events/person-year.
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• To get the HRs (with reference group ‘men 0-59y’) we simply divide all cells
with the baseline rate λ = exp(β0)

female=0 (men) female=1 (women)

age=0-59 exp(β0)/ exp(β0) = 1 exp(β0 + β1)/ exp(β0) = exp(β1)

age=60-74 exp(β0 + β2)/ exp(β0) = exp(β2) exp(β0 + β1 + β2)/ exp(β0) = exp(β1 + β2)

age=75+ exp(β0 + β3)/ exp(β0) = exp(β3) exp(β0 + β1 + β3)/ exp(β0) = exp(β1 + β3)
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• If we put the estimates from the Stata output into our table of parameters,
we get the HRs

female=0 (men) female=1 (women)
age=0-59 1.0 0.61

age=60-74 2.50 0.61× 2.50 = 1.53

age=75+ 6.18 0.61× 6.16 = 3.80

• Compared to men aged 0-59y, the women aged 60-74y have a 53% higher
mortality (HR=1.53), which is a combined effect of age and sex.

• Effect of being woman vs man is 0.61 (39% lower mortality).

• Effect of being 60-74 vs 0-59 is 2.50 (250% higher, or 2.5 times higher).

• Effect of being 75+ vs 0-59 is 6.18 (618% higher, or 6.2 times higher).
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• The effects of age are adjusted for sex, meaning that we are comparing age
effects within levels of sex. The effect of age (HRs 2.50 and 6.18) is the same
for both men and women, and is the averaged age effect across levels of sex.

• Similarly, the effect of sex is adjusted for age, meaning that we are comparing
the sex effect within levels of age. The effect of sex (HR 0.61) is the same in
all age groups, and is averaged across age groups.
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• If we want to get the effect of sex separately in all levels of age, we simply
change the reference rate to be men in all age levels.

female=0 (men) female=1 (women)

age=0-59 exp(β0)/ exp(β0) = 1 exp(β0 + β1)/ exp(β0) = exp(β1)

age=60-74 exp(β0 + β2)/ exp(β0 + β2) = 1 exp(β0 + β1 + β2)/ exp(β0 + β2) = exp(β1)

age=75+ exp(β0 + β3)/ exp(β0 + β3) = 1 exp(β0 + β1 + β3)/ exp(β0 + β3) = exp(β1)

• We see that the main effect models give the same effect of sex, exp(β1),
regardless of age level.

female=0 (men) female=1 (women)
age=0-59 1.0 exp(β1)

age=60-74 1.0 exp(β1)

age=75 1.0 exp(β1)
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• This is what a main effect model assumes, i.e. the effect of exposure is the
same in all levels of another variable.
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• Similarly, if we want to get the effect of age in both levels of sex, we change
the reference rate to 0-59 in both men and women.

female=0 (men) female=1 (women)

age=0-59 exp(β0)/ exp(β0) = 1 exp(β0 + β1)/ exp(β0 + β1) = 1

age=60-74 exp(β0 + β2)/ exp(β0) = exp(β2) exp(β0 + β1 + β2)/ exp(β0 + β1) = exp(β2)

age=75+ exp(β0 + β3)/ exp(β0) = exp(β3) exp(β0 + β1 + β3)/ exp(β0 + β1) = exp(β3)

• Again, the main effects of age are the same, exp(β2) and exp(β3), regardless
of sex level.

female=0 (men) female=1 (women)
age=0-59 1.0 1.0

age=60-74 exp(β2) exp(β2)

age=75+ exp(β3) exp(β3)
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Effect modification

• If the true effect of exposure is not the same, but varies across strata of
another variable there is said to be ‘effect modification’ (interaction).

• The exposure effect cannot then be represented by one HR for all levels of the
other variable.

• For example, the effect of age may depend on sex, so that men have a greater
effect of age than women.

• Then we say that the effect of age is modified by sex. There is an interaction
between age and sex.
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• Does sex modify the effect of age? If we estimate, from mortality rates, the
HR of women vs men separately in all age groups we get

Age Rate men Rate women HR (women vs men)

0-59 46.7 21.9 21.9/46.7=0.469
60-74 98.0 69.3 69.3/98.0=0.707
75+ 235.9 170.0 170.0/235.9=0.721

• The hazard ratios compare mortality in women to men within each age
category.

• If the effect of age is not modified by sex then we would expect these to be
similar.

• In the previous main effect model, we assumed (and estimated) the effect to
be 0.61 in all age groups. Is that plausible?

24



Interaction model using Poisson regression

• If we want to estimate separate effects of sex in age levels, then four
parameters are not enough.

• We have six combinations of age and sex, hence we need six parameters to
estimate six different rates.

• This is easily done by including interaction terms in the Poisson model.

• The interaction model is ln(λ) =
β0 + β1female+ β2age60+ β3age75+ β4female x age60+ β5female x age75
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• The parameters are

exp(β0) = rate at reference level of all covariates, i.e. men 0-59

exp(β1) = rate ratio (comparing women vs men among 0-59)

exp(β2) = rate ratio (comparing 60-74 vs 0-59 among men)

exp(β3) = rate ratio (comparing 75+ vs 0-59 among men)

exp(β4) = interaction term (excess rate for 60-74 vs 0-59 among women)

exp(β5) = interaction term (excess rate for 75+ vs 0-59 among women)
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. poisson _d ib0.female##ib0.age3, exposure(surv_mm) irr

_d | IRR [95% Conf Int]

-------------+------------------------

Female | .468009 .4140604 .5289866

|

age3 |

60 | 2.097968 1.877825 2.343918

75 | 5.047386 4.432543 5.747514

|

female#age3 |

Female#60 | 1.509675 1.273345 1.789869

Female#75 | 1.539727 1.281208 1.85041

|

_cons | .0038943 .0036133 .0041971

• 0.468 is the effect of female when age3 is at its first level.

• 2.097 and 5.047 are the effects of age3 when female is at its first level.

• 1.509 and 1.539 are the interactions between female and age3.
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• 0.00389 is the baseline rate in the reference level of both female and age3.
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Parameters for the interaction model

• The fitted rates (λ) from the interaction model can be expressed in terms of
the model parameters as follows

female=0 (men) female=1 (women)
age=0-59 exp(β0) exp(β0 + β1)

age=60-74 exp(β0 + β2) exp(β0 + β1 + β2 + β4)

age=75+ exp(β0 + β3) exp(β0 + β1 + β3 + β5)

• exp(β4) and exp(β5) are the interaction parameters. They measure deviations
from the hypothesis of main effect of sex in all age categories.

• The model is ln(λ) =
β0 + β1female+ β2age60+ β3age75+ β4female x age60+ β5female x age75
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• If we wish to tabulate the HRs, using the men aged 0-59 as reference group,
then we simply divided all cells with the reference rate.

female=0 (men) female=1 (women)

0-59 exp(β0)/ exp(β0) = 1 exp(β0 + β1)/ exp(β0) = exp(β1)

60-74 exp(β0 + β2)/ exp(β0) = exp(β2) exp(β0 + β1 + β2 + β4)/ exp(β0) = exp(β1 + β2 + β4)

75+ exp(β0 + β3)/ exp(β0) = exp(β3) exp(β0 + β1 + β3 + β5)/ exp(β0) = exp(β1 + β3 + β5)
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• If we add the Stata output into the table of HRs we get

female=0 (men) female=1 (women)
age=0-59 1.0 0.468

age=60-74 2.098 0.468× 2.098× 1.510 = 1.48

age=75+ 5.047 0.468× 5.047× 1.540 = 3.64

• Compare to the estimates from main effects model

female=0 (men) female=1 (women)
age=0-59 1.0 0.61

age=60-74 2.50 0.61× 2.50 = 1.53

age=75+ 6.18 0.61× 6.16 = 3.80
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Testing for interaction

• A test of interaction is simply to test if the excess (1.510 and 1.540) is equal
to 1 (or coefficients equal 0 on the log scale).

. poisson _d ib0.female##ib0.age3, exposure(surv_mm) irr

------------------------------------------------------------------------------

_d | IRR Std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------

Female | .468009 .0292453 -12.15 0.000 .4140604 .5289866

|

age3 |

60 | 2.097968 .1186601 13.10 0.000 1.877825 2.343918

75 | 5.047386 .3345166 24.43 0.000 4.432543 5.747514

|

female#age3 |

Female#60 | 1.509675 .1311343 4.74 0.000 1.273345 1.789869

Female#75 | 1.539727 .1443928 4.60 0.000 1.281208 1.85041

|

_cons | .0038943 .0001488 -145.21 0.000 .0036133 .0041971

------------------------------------------------------------------------------
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. testparm 1.female#60.age3 1.female#75.age3

( 1) [_d]1.female#60.age3 = 0

( 2) [_d]1.female#75.age3 = 0

chi2( 2) = 29.53

Prob > chi2 = 0.0000

• There is evidence of a statistically significant interaction (p-value <0.0001).

• This is a so-called Wald test, which approximates the likelihood ratio test.
We could also use a likelihood ratio test, where we compare the
log-likelihoods from the main effects model and the interaction model.
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Reparameterising the model to directly estimate the effect
of exposure in each level of another variable

• We are often interested in the effect of the exposure (women vs men) for
each level of the modifier (age group).

• We can divide the rates with different reference rates to obtain the effect of
sex in each level of age.

female=0 (men) female=1 (women)

0-59 exp(β0)/ exp(β0) = 1 exp(β0 + β1)/ exp(β0) = exp(β1)

60-74 exp(β0 + β2)/ exp(β0 + β2) = 1 exp(β0 + β1 + β2 + β4)/ exp(β0 + β2) = exp(β1 + β4)

75+ exp(β0 + β3)/ exp(β0 + β3) = 1 exp(β0 + β1 + β3 + β5)/ exp(β0 + β3) = exp(β1 + β5)

34



• This yields the following HRs:

female=0 (men) female=1 (women)
age=0-59 1.0 exp(β1)

age=60-74 1.0 exp(β1 + β4)

age=75+ 1.0 exp(β1 + β5)

• We can reparameterise the model in Stata to directly estimate parameters of
sex, one for each age group. We use the # notation instead of ##.
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How to make Stata produce stratified effects

• Instead of just one baseline rate, you need three baseline rates, λ (one for
each age group). In addition, for each age group, you need an HR for the sex
effect (three hazard ratios).

. poisson _d ibn.age3 ib0.female#i.age3, exposure(surv_mm) irr nocons

-------------------------------------------------

_d | IRR [95% conf. interval]

-------------+-----------------------------------

age3 |

0 | .0038943 .0036133 .0041971

60 | .0081701 .0075288 .0088659

75 | .0196559 .0176765 .0218569

|

female#age3 |

Female# 0 | .468009 .4140604 .5289866

Female#60 | .7065416 .6277414 .7952336

Female#75 | .7206063 .6283156 .8264532
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• Note that this is the same interaction model; there are still 6 parameters and
the fitted rates are identical. It is just that the 6 parameters in this model
have a different interpretation.

• The log-likelihood for this model is the same as the previous interaction
model. This is because we are fitting the exact same model, but with
different parameterisation.

• Technical note: The ibn. factor-variable operator specifies that a categorical
variable should be treated as if it has no base, or, in other words, that all
levels of the categorical variable are to be included in the parameters. This
means that there is no constant (also: nocons option must be added).
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Effects of exposure within each stratum of the modifier

• If we insert the Stata output in our previous table, we get

female=0 (men) female=1 (women)
age=0-59 1.0 0.468

age=60-74 1.0 0.707

age=75+ 1.0 0.721

• The stratum-specific HRs are different, there is evidence of interaction. In
particular, the HR for 0-59 is much lower than those for 60-74 and 75+.

• Effect of sex is 0.468 for 0-59, 0.468x1.510=0.707 for 60-74, and
0.468x1.540=0.721 for 75+. (There may be rounding errors.)

• Compare this to the main effects model: 0.61 for all age groups.
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• Similarly, we can reparameterise the models to show effect of age in levels of
sex.

• This yields the following HRs

female=0 (men) female=1 (women)
age=0-59 1.0 1.0

age=60-74 exp(β2) exp(β2 + β4)

age=75+ exp(β3) exp(β3 + β5)
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. poisson _d ibn.female ib0.age3#i.female, exp(surv_mm) irr nocons

------------------------------------------------

_d | IRR [95% conf. interval]

-------------+----------------------------------

female |

Male | .0038943 .0036133 .0041971

Female | .0018226 .0016542 .002008

age3#female |

60#Male | 2.097968 1.877825 2.343918

60#Female | 3.167250 2.783343 3.604109

75#Male | 5.047386 4.432543 5.747514

75#Female | 7.771598 6.823946 8.850852

------------------------------------------------
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• If we insert the Stata output in our previous table, we get

female=0 (men) female=1 (women)
age=0-59 1.0 1.0

age=60-74 2.098 3.167

age=75+ 5.047 7.772

• Effect of being 60-74 vs 0-59 is 2.10 for men, whereas it is 3.17 for women.

• Compare this to the main effects model: 2.50 for both sexes.

• Effect of being 75+ vs 0-59 is 5.05 for men, whereas it is 7.77 for women.

• Compare this to the main effects model: 6.18 for both sexes.
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Linear combinations of parameters

• As an alternative to reparameterising the interaction model with # we can
use the Stata lincom() command to estimate the effect of exposure within
each level of the modifier together with confidence intervals. Here again is
the interaction model with the default parameterisation.

.poisson _d ib0.female##ib0.age3, exposure(surv_mm) irr

------------------------------------------------------------------------------

_d | IRR Std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------

female |

Female | .468009 .0292453 -12.15 0.000 .4140604 .5289866

|

age3 |

60 | 2.097968 .1186601 13.10 0.000 1.877825 2.343918

75 | 5.047386 .3345166 24.43 0.000 4.432543 5.747514

|

female#age3 |

Female#60 | 1.509675 .1311343 4.74 0.000 1.273345 1.789869

Female#75 | 1.539727 .1443928 4.60 0.000 1.281208 1.85041

|

_cons | .0038943 .0001488 -145.21 0.000 .0036133 .0041971
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• The effect of sex for age 0-59 is 0.468. We now estimate the effect of sex for
the other two categories of age.

. lincom 1.female + 1.female#60.age3, irr

------------------------------------------------------------------------------

_d | IRR Std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------

(1) | .7065416 .0426289 -5.76 0.000 .6277414 .7952336

------------------------------------------------------------------------------

. lincom 1.female + 1.female#75.age3, irr

------------------------------------------------------------------------------

_d | IRR Std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------

(1) | .7206063 .0503884 -4.69 0.000 .6283155 .8264532

------------------------------------------------------------------------------

• The calculation 0.468× 2.098 = 0.707 is not difficult but calculating the
standard error and confidence intervals is non-trivial (a combination of
variances and covariances). Lincom is useful for obtaining the CIs.
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Review: Parameterisations of the interaction model

• Interaction models can be parameterised in different ways to show effects
using different reference groups.

• Interaction models measure deviations from the hypothesis of main effects,
i.e. that the effect of sex is the same in all age categories.

• Interactions are symmetrical, meaning that we can choose either variable sex
or age as the effect modifier of the other. The test for interaction will be the
same regardless of parameterisation.

• If we wish to change reference group, simply divide the cells with
corresponding reference group. We can choose any contrasts, i.e. compare
any groups.

• For example: If we wish to tabulate the HRs, using the men aged 0-59y as
reference group for all our HRs, then we simply divided all cells with the rate
for men 0-59.
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Extra: How the two parameterisations are related

• This explains how the two parametrisations with ## and # for the
age-specific hazard ratios for women vs men are mathematically related.

• Both parametrisations use 6 parameters, β or γ, which have different
interpretations, as they represent different contrasts (group comparisons).

female=0 (men) female=1 (women)
0-59 exp(β0) = exp(γ0) exp(β0 + β1) = exp(γ0 + γ3)

60-74 exp(β0 + β2) = exp(γ1) exp(β0 + β1 + β2 + β4) = exp(γ0 + γ4)

75+ exp(β0 + β3) = exp(γ2) exp(β0 + β1 + β3 + β5) = exp(γ0 + γ5)

• The stratum-specific interaction model is ln(λ) = γ0age0+ γ1age60+
γ2age75+ γ3female x age0+ γ4female x age60+ γ5female x age75
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