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Topics for Day 1

Central concepts in survival analysis: censoring, survivor function, hazard
function.

Estimating survival non-parametrically using the Kaplan-Meier method.

Non-parametric methods for testing differences in survival between groups
(log-rank and Wilcoxon tests).

Rates and person-time
Hazard rates and hazard function

Time scales



Analysis of Time-to-Event Data (survival analysis)

Survival analysis is used for e.g. cohort studies and randomized clinical trials
(RCTs), where study participants are followed from a start time to an
endpoint (failure or event).

Survival analysis is also known as failure time analysis (primarily in
engineering), lifetime analysis, and time-to-event analysis.

Survival analysis concerns analysing the time to the occurrence of an event,
e.g. time until a patient dies.

The event is not necessarily death, despite the name survival analysis. It can
also be occurrence of disease (incidence), or any other event.



An assumption of survival analysis is that the event of interest (e.g. death) is
bound to occur if we are able to observe (follow-up) each individual for a
sufficient length of time.

The characteristic that complicates the use of standard statistical methods
(such as t-tests or logistic regression) is censoring — meaning that some
individuals do not experience the event before the end of follow-up.

Censoring leads to unobserved values of the event of interest. Censoring also
leads to differences in follow-up time between individuals.

Due to censoring, we need special methods - survival analysis - that can
account for censoring and differences in follow-up time between study
participants.

The survival analysis methodology is similar for randomised and observational
studies, although some methods are more appropriate for some designs than
others (e.g. need to control for confounding in observational studies).
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Formal requirements of time-to-event data

e Time-to-event data can be thought of as comprising two dimensions

1. a time at risk (continuous), a.k.a. survival time, person-time, follow-up time
2. an event indicator (binary), which is 1 if the event occurs, 0 if censoring

e Three basic requirements define time-to-event measurements

a. precise definition of the start and end of follow-up time
b. unambiguous origin for the measurement of ‘time’; scale of time (e.g. time

since diagnosis, time since study entry, calendar time, attained age)
c. precise definition of the event of interest

e We will discuss the concept of timescales (b) and how to choose an
appropriate timescale later in the course.

e On the upcoming slide we will see how (a) and (c) are not always perfectly
satisfied in practice.



Examples of time-to-event measurements

— Time from diagnosis of cancer to death due to the cancer

— Time from an exposure to cancer diagnosis

— Time from HIV infection to AIDS

— Time from randomisation to heart failure in a clinical trial

— Time from start of drug A intake to depression

— Time from diagnosis of localised cancer to metastases

— Time between two attempts to donate a unit of blood for transfusion purposes
— Time to the first goal (or next goal) in a hockey game

Epidemiological cohort studies generate time-to-event data and are analysed
in the framework of survival analysis.

Examples of time-to-event data can be found in almost every discipline.

In each of these examples what is the start and end of follow-up, and event?



Sample data sets

e The following data sets will be used during the course:

colon : Colon carcinoma diagnosed 1975-1994 with follow-up to Dec 1995.

colon_sample : A random sample of 35 patients from the colon data.

melanoma : Skin melanoma diagnosed 1975-1994 with follow-up to Dec 1995.

diet : A pilot study evaluating the relation between dietary energy intake and
incidence of coronary heart disease (CHD).

e The diet data are analysed extensively by David Clayton and Michael Hills in
their textbook [5]. These data are also used in examples in the Stata manual
(for example, stsplit, strate, and stptime).



Variables in the colon carcinoma data set

obs: 15,564

value

variable name label variable label

sex sex Sex

age Age at diagnosis

stage stage Clinical stage at diagnosis
mmdx Month of diagnosis

yydx Year of diagnosis

surv_mm Survival time in months
sSurv_yy Survival time in years
status status Vital status at exit

subsite colonsub  Anatomical subsite of tumour
year8594 year8594  Indicator for diagnosed during 1985-94
agegrp agegrp Age in 4 categories

dx Date of diagnosis

exit Date of exit

id Unique patient ID



Vital status in colon data set

Table 1: Codes for vital status

Code and description

0 Alive

1 Dead: colon cancer was the cause
2 Dead: other cause of death

4 Lost to follow-up




Age Clinical dx date Surv. time
ID Sex at dx stage mmyy mm yy Status
1 male 72 Localised 2.89 2 0 Dead - other
2 female 82 Distant 12.91 2 0 Dead - cancer
3 male 73 Distant 11.93 3 0 Dead - cancer
4 male 63 Distant 6.88 5 0 Dead - cancer
5 male 67 Localised 5.89 7 0 Dead - cancer
6 male 74 Regional 7.92 8 0 Dead - cancer
7 female 56 Distant 1.86 9 0 Dead - cancer
8 female 52 Distant 5.86 11 0 Dead - cancer
9 male 64 Localised 11.94 13 1 Alive
10 female 70 Localised 10.94 14 1 Alive
11 female 83 Localised 7.90 19 1 Dead - other
12 male 64 Distant 8.89 22 1 Dead - cancer
13 female 79 Localised 11.93 25 2 Alive
14 female 70 Distant 6.88 27 2 Dead - cancer
15 male 70 Regional 9.93 27 2 Alive
16 female 68 Distant 9.91 28 2 Dead - cancer
17 male 58 Localised 11.90 32 2 Dead - cancer
18 male 54 Distant 4.90 32 2 Dead - cancer
19 female 86 Localised 493 32 2 Alive
20 male 31 Localised 1.90 33 2 Dead - cancer
21 female 75 Localised 1.93 35 2 Alive
22 female 85 Localised 11.92 37 3 Alive
23 female 63 Distant 7.86 43 3 Dead - cancer
24 male 54 Regional 6.85 46 3 Dead - cancer
25 male 80 Localised 6.91 54 4 Alive
26 female 52 Localised 7.89 7 6 Alive
27 male 52 Localised 6.89 78 6 Alive
28 male 65 Localised 1.89 83 6 Alive
29 male 60 Localised 11.88 85 7 Alive
30 female 71 Localised 11.87 97 8 Alive
31 male 58 Localised 8.87 100 3 Alive
32 female 80 Localised 5.87 102 38 Dead - cancer
33 male 66 Localised 1.86 103 38 Dead - other
34 male 67 Localised 3.87 105 38 Alive
35 female 56 Distant 12.86 108 9 Alive
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sex
age
stage
mmdx
yydx
surv_mm
Surv_yy
status
subsite
year8594
agegrp
dx

exit

Variables in the skin melanoma data set

Sex

Age at diagnosis

Clinical stage at diagnosis
Month of diagnosis

Year of diagnosis

Survival time in months
Survival time in years

Vital status at exit
Anatomical subsite of tumour
Indicator for diagnosed during 1985-94
Age in 4 categories

Date of diagnosis

Date of exit

id Unique patient ID

e The variable vital status is coded similarly as in the colon cancer data set.
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Variables in the diet data set

. describe

obs: 337 vars: 12

variable label variable label

id Subject identity number

chd Failure: 1=chd, O otherwise
y Time in study (years)

hieng hieng Indicator for high energy
energy Total energy (kcals per day)
job job Occupation

month Month of survey

height Height (cm)

weight Weight (kg)

doe Date of entry

dox Date of exit

dob

Date of birth

12
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What can we estimate from time-to-event data?

Survival probability (survivor function), i.e. the proportion who have not
experienced the event at a given time point during follow-up

Mean survival time, i.e. average survival time

Median survival time, time at which 50% of individuals have experienced the
event

Event rates (hazard rates), often described as the instantaneous risk that the
event will occur at a given time point (hazard function)

Hazard ratios, i.e. ratios of event rates between different groups (e.g.,
exposed vs. unexposed) while adjusting for confounders

In some studies the time-to-event (or survival probability) is of primary
interest whereas in many epidemiological cohort studies we are primarily
interested in comparing the event rates between the exposed and unexposed.
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Censoring and follow-up

e Censoring refers to the situation where the individual can no longer be
followed up and event of interest has not occurred during the observed
follow-up time.

e We will not be able to observe the event if it happens after the censoring
event.

e |n studying the survival of cancer patients, for example, patients enter the
study at the time of diagnosis (or the time of treatment in randomised trials)
and are followed up until the event of interest is observed. Censoring may
occur in one of the following forms:

— Termination of the study before the event occurs (administrative censoring);

— Loss to follow-up, for example, if the patient emigrates; and

— Death due to a cause not considered to be the event of interest (in
cause-specific survival analyses).

15



We say that the survival time is censored.

These are examples of right censoring, which is the most common form of
censoring in medical studies.

With right censoring, we know that the event has not occurred during
follow-up, but we are unable to follow-up the patient further. We know only
that the true survival time of the patient is greater than a given value.

Censoring also causes survival times to differ between individuals.

If we do not account for these differences (by using survival analysis) then
results may be biased.
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Examples of events and censorings

Table 2: Examples of some common events and censorings

Event Censoring

Death Emigration
End-of-study (e.g. 2006-12-31)

Cancer death Death due to other causes than cancer
Emigration
End-of-study (e.g. 2006-12-31)

Breast cancer incidence Death
Emigration

End-of-study (e.g. 2006-12-31)

Mastectomy
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Why do we need survival analysis?

In Biostat | and Biostat Il we covered statistical methods for comparing
means and proportions (e.g., logistic regression). What happens if we apply
these methods now?

As an example, we use the 35 colon cancer patients diagnosed 1985-1994,
from colon_sample.

Let's assume a new treatment was introduced in late 1992 and we are
interested in studying whether patient survival has improved for patients
diagnosed 1993-94 compared to those diagnosed 1985-92.

We want to compare the proportion of patients who die between the two
diagnosis periods.

The patients were followed until end of 1995.

18



e This means that patients who were diagnosed 1993—-94 only had follow-up for
at most 3 years (Jan 1993-Dec1995) due to administrative censoring.

e Whereas, patients diagnosed 1985-92 had follow-up for 11 years (Jan
1985-Dec 1995).
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. tab dx93 dead, row chi?2

| dead
dx93 | alive dead | Total
___________ A
dx 1985-92 | 10 18 | 28
| 35.71 64.29 | 100.00
___________ A
dx 1993-94 | 6 1| 7
| 85.71 14.29 | 100.00
___________ e
Total | 16 19 | 35
| 45.71 54.29 | 100.00

Pearson chi2(1) = 5.6414 Pr = 0.018

e We see that only 1 of the 7 (14%) patients diagnosed in the recent period
died compared to 18 of 28 (64%) in the early period and this difference is
statistically significant.
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e |t is not surprising that the proportion of deaths was lower among patients
diagnosed more recently since these patients had a shorter follow-up time;
they did not have the same opportunity to die.

e Let's instead compare the average ‘survival time' (the lengths of the lines)
between the two groups while ignoring whether or not the patient died.

. ttest surv_mm, by(dx93)

Two-sample t test with equal variances

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Intervall
_________ e e e
1985-92 | 28  48.39286 7.067202 37.39612 33.89216 62.89356
1993-94 | 7 21.28571 4.37914 11.58612 10.57034 32.00108
_________ o
combined | 35 42.97143 5.988713 35.4297 30.8009 55.14196
_________ S

diff | 27.10714 14.44577 -2.282995 56.49728
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e Patients diagnosed in 1985-92 ‘survived’ on average for 48 months compared
to 21 months for patients diagnosed 1993-94.

e Restricting this analysis to patients who died (i.e., mean survival time
among those who died) is not appropriate either. By definition, the maximum
survival time for patients diagnosed 1993-1994 is 3 years.

. ttest surv_mm if dead==1, by(dx93)
Two-sample t test with equal variances

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Intervall]
_________ e e
1985-92 | 18 29.5 7.03783 29.85898 14.65148 44 . 34852
1993-94 | 1 3
_________ e
combined | 19 28.10526
_________ R
diff | 26.5
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What we would like is some measure of the risk of death adjusted for the fact
that individuals were at risk for different lengths of time.

Methods used for making inference about proportions (e.g., logistic
regression) assume that all individuals have the same (potential) time at risk.

This is typically not the case when we have survival data, due to censoring.

If we have a binary outcome and all individuals are at risk for the same length
of time, then the proportion is an appropriate outcome measure.

number of events

proportion who experience the event = —
number of individuals

Every individual contributes the same 'amount of risktime’ to the
denominator.
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e |f, however, individuals are at risk for differing lengths of time we use
‘person-time’ (i.e. the sum of all follow-up times) as the denominator and

estimate the event rate.

number of events

event rate = : .
sum of person-time at risk

e The event rate will account for the fact that different individuals have
different lengths of follow-up, and thereby different chance of experiencing
the event.

24



e Event rates for the colon cancer patients can easily be calculated using Stata.

. stset surv_mm, failure(dead==1) scale(12)
. strate dx93

Estimated rates and lower/upper bounds of 95) confidence intervals
(35 records included in the analysis)

| dx 1985-92 18 112.9167 0.159410 0.100435 0.253014 |
| dx 1993-94 1 12.4167 0.080537 0.011345 0.571737 |

e The event rate is not the only appropriate outcome measure; it is also
possible to estimate the proportion surviving (or proportion dying) while
controlling for the fact that individuals are at risk for different lengths of time.
This, in fact, will be the focus for today’s lectures.
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Terminology

In the strictest sense, a ratio is the result of dividing one quantity by another.
In the sciences, however, it is mostly used in a more specific sense, that is,
when the numerator and the denominator are two separate and distinct
quantities [10].

A proportion is a type of ratio in which the numerator is included in the
denominator, e.g. the incidence proportion (aka cumulative incidence).

A rate is a measure of change in one quantity per unit of another quantity. In
epidemiology, rates typically have units events per unit time.

We will be estimating both proportions (e.g., survival proportions) and rates

(e.g., mortality rates) and should recognise that these are conceptually
different.
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The survivor function

e The survivor function, S(t), gives the probability of surviving until at least
time ¢, i.e. the probability of not having the event up until time ¢.

Kaplan-Meier survival estimate
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0.25
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analysis time
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|

Figure 1: Estimates of S(¢) for the 35 patients diagnosed with colon carcinoma.
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Note that S(t) is a function (the survivor function) which depends on ¢

S(t) is a non-increasing function with a value 1 at t=0 and a value 0 as ¢
approaches infinity.

The survivor function evaluated at a specific value of ¢ is referred to as the
‘survival proportion’, for example, the ‘5-year survival proportion’.

For example, the 5-year survival proportion for the data presented in Figure 1
is 45%.

Note that S(¢) should not be referred to as the survival rate, but rather the
survival proportion.
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Interpreting and comparing S(¢) for groups

08{
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Patient survival time in days

Figure 2: Estimated survivor function (S) for two groups of patients

29



Individuals in group 1 experience superior survival compared to individuals in
group 2 (even if the long-term survival proportions are similar).

The gap between the survival curves is decreasing after approximately 850
days.

It is, however, difficult to determine the essence of the failure pattern, and
even more difficult to compare it between groups, simply by studying plots of
the survivor function.

The rate of decline of the survivor function, in survival analysis called the
hazard function, A(t), can be thought of as “the speed with which a
population is dying” .}

When the survival difference is first increasing and then decreasing, is an
example of non-proportional hazards, a concept we will return to later.

1strictly, the hazard is the rate of change (and the derivative of the negative logarithm) of the survivor function,

such that \(t) = (%S(t)) /S(t) = —4 In[S(¢)].
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The survival experience of a cohort can be expressed in terms of the survival
proportion or the hazard rate.

It is often easier to model the hazard function rather than the survivor
function.

We can model the hazard function and estimate the hazard ratio for the
exposed compared to the unexposed.

Therefore, it is often the hazard function, rather than the survivor function,
which is of primary interest.
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The hazard function, \(?)

The term ‘hazard rate’ is the generic term used in survival analysis to
describe the ‘event rate’. If the event of interest is disease incidence then the
hazard represents the incidence rate, while if the event is death the hazard is
the mortality rate.

The hazard function, A(t), is the instantaneous event rate at time ¢,
conditional on survival up to time ¢t. The units are events per unit time.

In contrast to the survivor function, which describes the probability of not
failing before time ¢, the hazard function focuses on the failure rate at time ¢
among those individuals who are alive at time t.

That is, a lower value for A(t) implies a higher value for S(¢) and vice-versa.
Note that the hazard is a rate, not a proportion or probability, so A(t) can

take on any value between zero and infinity, as opposed to S(t) which is
restricted to the interval [0, 1].
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Survival of patients with differentiated thyroid cancer
sts graph, by(histology)

Kaplan—Meier survival estimates, by histology
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histology = Follicular ————- histology = Papillary

e What do we see? Consider the questions on the following slide.
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e Which group (histological type) experiences the best survival?

e Does the group with best survival experience lower mortality throughout the
follow-up?

e At what point in the follow-up is mortality the highest?
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sts graph, by(histology) hazard

Thyroid cancer, smoothed hazard

0 10 20 30 40
Time since diagnosis (years)

histology = Follicular ———-—- histology = Papillary

e Is an assumption of proportional hazards appropriate®?

2Proportional hazards means that the hazard of group 1 is a constant multiple of the hazard of group 2.
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sts graph, by(histology) hazard yscale(log)

Thyroid cancer, smoothed hazard plotted on log scale

I
0 10 20 30 40
Time since diagnosis (years)

histology = Follicular ——-——- histology = Papillary

e We would be happy with an assumption of proportional hazards?!

30n log-scale, PH means that the log hazard of group 1 is a constant different from the log hazard of group 2.
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Survival Function
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e If we were to base inference solely on the data shown in the graph (i.e., make
no assumptions about what happens after 5 years) we would conclude that
group C experiences superior survival compared to group A (even if the 5-year
survival proportions are similar).

e Patients in group C have lower mortality for the interval up to approximately

15 months following diagnosis but then have higher mortality than group A
after 15 months. (Non-proportional hazards)
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Survival Function

1.0

0.0

What about if we extend the follow-up?

Which treatment is associated with the best survival?

Treatment A
Treatment C

I I I
0 5 10
Time since treatment (years)
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Hazard rate

Now plot the two hazard functions

Treatment A
Treatment C

0 1 2 3

Years since diagnosis
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Other measures of survival: Median survival time

The median survival time is another measure used to summarise the survival
experience of the patients.

The median survival time is the time at which S(¢) = 0.5. That is, the time
beyond which 50% of the individuals in the population are expected to survive.

It is estimated by the time at which the estimate of S(¢) falls below 0.5.

The median survival time for the example shown on the next slide is
approximately 1.3 years.

The median can be estimated by extrapolation if the survivor function does
not sink below 0.5 during the period the patients are under follow-up.
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Other measures of survival: Mean survival time

e The mean survival, i.e. average survival time, is the area under the survival
curve (the integrated survival function).

e Be aware of that this is not the same as 'mean follow-up time’, i.e. taking the
mean of all follow-up times.

e \When the survival function does not reach 0, the restricted mean survival
time can be estimated. Otherwise the survival function has to be
extrapolated.
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Estimating the survivor function, S(t)

There are two main non-parametric methods to estimate S(¢): The
Kaplan-Meier method and the life table method (see Appendix). We will
focus on the Kaplan-Meier method which is the most commonly used.

Consider the colon_sample data for the 35 colon cancer patients, see slide 48.
We want to estimate S(t) where the event of interest is death (any cause).

An estimate of S(¢) could be obtained by simply calculating the proportion of
individuals still alive at selected values of ¢, such as completed years.

We had 35 patients alive at start. Eight of the 35 patients died during the

first year of follow-up so the estimate for S(1) is
S(1) = (35 — 8)/35 = 27/35 = 0.771.
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We encounter problems when attempting to estimate S(2). Ten patients died
within two years of follow-up, but 2 patients (patients 9 and 10) could not be
followed-up for a full 2 years.

We could exclude these two patients from the analysis alltogether and let
S(2) = (33 — 10)/33, but this will underestimate the true survival proportion
since it ignores the fact that each of these two patients were at risk of death
for between one and two years but did not die while under observation.

If we instead use S(2) = (35 — 10)/35 then we will overestimate the true
survival proportion, since we are assuming that each of these two patients
survived for a full two years.

Two common (and similar) methods for estimating S(¢) in the presence of
censoring are the Kaplan-Meier (product-limit) method and the life table
(Actuarial) method.

47



Age Clinical dx date Surv. time
ID Sex at dx stage mmyy mm yy Status
1 male 72 Localised 2.89 2 0 Dead - other
2 female 82 Distant 12.91 2 0 Dead - cancer
3 male 73 Distant 11.93 3 0 Dead - cancer
4 male 63 Distant 6.88 5 0 Dead - cancer
5 male 67 Localised 5.89 7 0 Dead - cancer
6 male 74 Regional 7.92 8 0 Dead - cancer
7 female 56 Distant 1.86 9 0 Dead - cancer
8 female 52 Distant 5.86 11 0 Dead - cancer
9 male 64 Localised 11.94 13 1 Alive
10 female 70 Localised 10.94 14 1 Alive
11 female 83 Localised 7.90 19 1 Dead - other
12 male 64 Distant 8.89 22 1 Dead - cancer
13 female 79 Localised 11.93 25 2 Alive
14 female 70 Distant 6.88 27 2 Dead - cancer
15 male 70 Regional 9.93 27 2 Alive
16 female 68 Distant 9.91 28 2 Dead - cancer
17 male 58 Localised 11.90 32 2 Dead - cancer
18 male 54 Distant 4.90 32 2 Dead - cancer
19 female 86 Localised 493 32 2 Alive
20 male 31 Localised 1.90 33 2 Dead - cancer
21 female 75 Localised 1.93 35 2 Alive
22 female 85 Localised 11.92 37 3 Alive
23 female 63 Distant 7.86 43 3 Dead - cancer
24 male 54 Regional 6.85 46 3 Dead - cancer
25 male 80 Localised 6.91 54 4 Alive
26 female 52 Localised 7.89 7 6 Alive
27 male 52 Localised 6.89 78 6 Alive
28 male 65 Localised 1.89 83 6 Alive
29 male 60 Localised 11.88 85 7 Alive
30 female 71 Localised 11.87 97 8 Alive
31 male 58 Localised 8.87 100 3 Alive
32 female 80 Localised 5.87 102 38 Dead - cancer
33 male 66 Localised 1.86 103 38 Dead - other
34 male 67 Localised 3.87 105 38 Alive
35 female 56 Distant 12.86 108 9 Alive
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Summary of possible approaches to estimating S(2)

e \We've now seen one approach that leads to an overestimate and one that
leads to an underestimate.

—1
35 0 = (0.714 is an overestimate.
35
4 —1
5 31 0 = (0.706 reasonable estimate?
—1
33 y = (0.670 1is an underestimate.
33
34—10

e We don't actually use as an estimate of S(2) but we do make a similar

type of adjustment.

34
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The general approach to nonparametric estimation of S(t)

e Assume we wish to estimate five year survival, S(5).

P1 P2 P3 P4 P5

[ I I I I

[ .
0 1 2 3 4 5 time

e We start by estimating the following conditional survival probabilities:
p1, the probability of surviving at least 1 year from time 0
p2, the probability of surviving at least 2 years conditional on surviving 1 year
p3, the probability of surviving at least 3 years conditional on surviving 2 years
p4, the probability of surviving at least 4 years conditional on surviving 3 years
ps, the probability of surviving at least 5 years conditional on surviving 4 years
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The probability of surviving at least 5 years (from time zero) is then given by
the product of these conditional survival probabilities.

5
5(5) = sz'
i=1
That is, to survive five years one must survive year 1 and year 2 and year 3,

and year 4, and year b.

The advantage of this approach is that we can appropriately account for
censoring when estimating the probability of surviving a small time interval
(i.e., when estimating the conditional survival probabilities).

The cumulative survival is estimated as the product of conditional survival
proportions, where the estimate of each conditional survival proportion is
based upon only those individuals under follow-up.
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That is, the individuals who are censored are assumed to have the same
probability of death as those individuals who could be followed up.

This requires the assumption that censoring is non-informative.

That is, we make the assumption that, conditional on the values of any
explanatory variables, censoring is unrelated to the probability of death (the
likely course and outcome of the disease).

If censoring was informative, for example if censored were more likely to die,
then we would be left with healthier patients in the study, showing a better
survival than the true survival of the patients.

More on informative censoring later during the course.
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This approach is employed by both the Kaplan-Meier (product-limit) method
and the life table (Actuarial) method.

We chose, arbitrarily, to estimate conditional probabilities for one year
intervals (time-bands) but the intervals may be any width.

The primary differences between the Kaplan-Meier and life table methods is
the manner in which the intervals are chosen (not really a difference in
theory) as well as how censoring and ties are dealt with.

If two individuals have the same survival time (time to event or time to
censoring), we say that the survival times are 'tied’.

Many of the standard methods for survival analysis, such as the Kaplan-Meier
method and the Cox proportional hazards model, assume that survival time is
measured on a continuous scale, and that ties are therefore rare.

In some epidemiological studies, however, ties could occur if follow-up time is
not measured by exact dates but only in years or months.
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The Kaplan-Meier method for estimating S(¢)

Also known as the product-limit method but is more commonly known as the
Kaplan-Meier method, after the two researchers who first published the
method in English in 1958 [15]. The method was published earlier (1912) in
German [15, 2].

Rather than using pre-specified time intervals (e.g. 1 year), interval-specific
survival is estimated at each event time.

To obtain Kaplan-Meier estimates of survival, the patient survival times are
first ranked in increasing order.

The times where events (deaths) occur are denoted by t¢;, where
h <ta <tz <....

The number of deaths occurring at ¢; is denoted by d;.

54



The number of persons at risk at ¢; is denoted by ;.

If both censoring(s) and death(s) occur at the same time, then the
censoring(s) are assumed to occur immediately after the death time.

That is, individuals with survival times censored at ¢; are assumed to be at
risk at ¢;.

The interval-specific probability of survival at t; is (I;-d;)/l;, or (1-d;/1;).
S(t) is the product of all p,=(1-d;/l;) at all event time t; prior to t.

The Kaplan-Meier estimate of the cumulative survivor function at time ¢ is
therefore given by

o 1 if t < t1
50 ={ [ _a_t) wisr ()

1

where [; is the number of persons at risk.
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A plot of the Kaplan-Meier estimate of the survivor function (slide 27) takes
the form of a step function, in which the survival probabilities decrease at
each death time and are constant between adjacent deaths times.

Only those intervals containing an event contribute to the estimate, so we
can ignore all intervals where only censoring occurs.

Censorings do not affect the estimate of S(¢), but contribute in Equation 1 by
decreasing [; at the next death time.

If the largest observed survival time (which we will call ¢,,4.) is a censored
survival time, then S(¢) is undefined for t > t,q., otherwise S(t) = 0 for
t > timax-

Non-informative censoring is assumed for the Kaplan-Meier method.
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In essence, the Kaplan-Meier method uses an interval size decreased towards
zero so that the number of intervals tends to infinity.

The Kaplan-Meier method was developed for applications where survival time
Is measured on a continuous scale.

In practice, survival time is measured on a discrete scale (e.g. days, months,
or years) so the interval length is limited by the accuracy to which survival
time is measured.

The Kaplan-Meier approach is slightly biased in the presence of ties so one
should use as accurate time measurements as possible in order to minimise

the number of ties.

That is, do not use measurements of time in months if time in days is also
known.
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K-M estimates for the sample data (up to 25 months)

at  observed
t risk  deaths Di S(t) SE
0 35 0 1.0000 1.0000 —
2 35 2 0.9429 0.9429 0.0392
3 33 1 0.9697 0.9143 0.0473
5 32 1 0.9688 0.8857 0.0538
7 31 1 0.9677 0.8571 0.0591
8 30 1 0.9667 0.8286 0.0637
9 29 1 0.9655 0.8000 0.0676
11 28 1 0.9643 0.7714 0.0710
13+ 27 0
14+ 26 0
19 25 1 0.9600 0.7406 0.0745
22 24 1 0.9583 0.7097 0.0776
25+ 23 0
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Kaplan—Meier estimates of cause—specific survival
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Figure 3: Estimates of S(t) for the 35 patients diagnosed with colon carcinoma.
All deaths are considered events (S(t) is called the observed survivor function).
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e The standard error of the Kaplan-Meier estimate of S(¢) can be obtained
using Greenwood's method [12] (slide 110).

e Confidence intervals for S(t) can be obtained from the standard error based
on the Normal distribution as described in the Appendix on slide 112.

e These confidence intervals are point-wise, meaning that they are valid at each
specific time point ¢.
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Testing for differences in survival between groups

Comparing survival at a fixed time point (e.g. five years) wastes available
information.

It is invalid to compare the proportion surviving at a given time, based on the
comparison of two binomial proportions, where the time point for comparison
is chosen after viewing the estimated survivor functions (e.g. testing for a
difference at the point where the Kaplan-Meier curves show the largest
difference).

Various tests are available (parametric and non-parametric) for testing
equality of survival curves. The most common is the log rank test, which is
non-parametric.

To perform a log-rank test: Start by tabulating the number at risk in each
exposure group and the total number of events (deaths) at every time point
when one of more deaths occur.
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e Under the null hypothesis that the two survival curves are the same, the
expected number of deaths in each group will be proportional to the number
at risk in each group.

e For example (see slide 64), at t = 2 months we observed 2 deaths (one male
and one female). Conditional on 2 deaths being observed, we would expect
2 x 19/35 = 1.086 deaths among the 19 males at risk and 2 x 16/35 = 0.914
deaths among the 16 females at risk.

e Now calculate the totals of the observed and expected number of deaths for
each group (1=males, 2=females), calling them O1, O5, E1, and Es, and
calculate the following test statistic

(01 — Ey)? N (O2 — E2)2.

H =
Eq by
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e Under the null hypothesis, 8 will approximately follow a y? distribution with 1
degree of freedom. That is, if 6 is greater than 3.84 then we reject the null
hypothesis and conclude that there is a statistically significant difference
between the two survival curves.
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Log rank test for comparing survival of males and females

event males females
time atrisk obs exp at risk  obs exp
2 19 1 1.086 16 1 0.914
3 18 1 0.545 15 0 0.455
5 17 1 0.531 15 0 0.469
7 16 1 0.516 15 0 0.484
8 15 1 0.500 15 0 0.500
9 14 0 0.483 15 1 0.517
11 14 0 0.500 14 1 0.500
19 13 0 0.520 12 1 0.480
22 13 1 0.542 11 0 0.458
27 12 0 0.545 10 1 0.455
28 11 0 0.550 9 1 0.450
32 11 2 1.158 8 0 0.842
33 9 1 0.563 7 0 0.438
43 8 0 0.615 5 1 0.385
46 8 1 0.667 4 0 0.333
102 2 0 0.500 2 1 0.500
103 2 1 0.667 1 0 0.333

Totals: O; =11, E; = 10.488, Oy = 8, B3 = 8.512
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The test statistic is @ = (O — E1)?/E;1 + (O3 — E5)?/E5 = 0.056, which is
less than 3.84 implying no evidence of a difference in survival between males
and females.

For k groups, the log rank test statistic is

0 —

(0; — E;)?
E;

k
1=

1

which has an approximate x7_, distribution under the null hypothesis.

The log rank test is designed to be sensitive to departures from the null
hypothesis in which the two hazards (instantaneous death rates) are
proportional over time. It is very insensitive to situations in which the hazard
functions cross.

The log rank test puts equal weight on every failure (irrespective of the
number at risk at the time of the failure).
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e An alternative test, the generalised Wilcoxon test, is constructed by
weighting the contribution of each failure time by the total number of
individuals at risk and is consequently more sensitive to differences early in
the follow-up period (when the number at risk is larger).

e The Wilcoxon test is more powerful than the log rank test if the proportional
hazards assumption does not hold.

e Both the log-rank and the Wilcoxon tests are non-parametric tests, which do
not assume any distribution for the survival times.
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Limitations of non-parametric tests

A non-parametric test, e.g. log rank test, provides nothing more than a test
of statistical significance for the difference between the survival curves; it tells
us nothing about the size of the difference.

In addition, it is difficult to apply a non-parametric test while simultaneously
controlling for potential confounding variables.

A regression approach would, instead, allow us to both determine statistical
significance and to estimate the size of the effect, while controlling for
confounders.

A regression approach is therefore preferable in most situations.

In a randomised clinical trial, potential confounders are controlled for in the
randomisation, so we could use the log rank test to compare survival curves
for the different treatment groups (although it would not give the effect size).
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Testing for differences in survival — Summary of key points

e Various tests are available for testing equality of survival curves, the most
well-known being the log rank test.

e These tests are rarely used in observational epidemiology; we prefer to use
modelling since it:

1. provides estimates of the size of the effect (i.e., rate ratios); the log-rank test
just gives a p-value;
2. provides greater possibilities for confounder control and effect modification.

e The log-rank test assumes proportional hazards.

e Consider the situation where we have two groups; a Cox model with one
explanatory variable gives us everything the log-rank test does (a p-value). It
also gives us the estimated hazard ratio and Cl but, more importantly, it is
simple to extend the model to compare survival between the two groups while
controlling for potential confounders.
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Survival analysis using Stata

In order to analyse survival data it is necessary to specify (at a minimum) a
variable representing follow-up time and a variable specifying whether or not
the event of interest was observed (called the failure variable).

Instead of specifying a variable representing survival time we can specify the
entry and exit dates (this is necessary if subjects enter the study at different
times).

In many statistical software programs (such as SAS), these variables must be

specified every time a new analysis is performed.

In Stata, these variables are specified once using the stset command and
then used for all subsequent survival analysis (st) commands (until the next
stset command).
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For example

. use melanoma
stset surv_mm, failure(status==1)

The above code shows how we would stset the skin melanoma data in order
to analyse cause-specific survival with survival time in completed months
(surv_mm) as the time variable.

Of the four possible values of status, we have specified that only code 1
indicates an event (death due to melanoma).

If we wanted to analyse all-cause survival (where all deaths are considered to
be events) we could use the following command

stset surv_mm, failure(status==1,2)

Status is coded: 1=death due to melanoma, 2=death due to other cause,
4=lost to follow-up, O=alive.
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e Some of the Stata survival analysis (st) commands relevant to this course are
given below. Further details can be found in the manuals or online help.

stset
stsplit
stdes
stsum
sts

strate
stptime
stcox
stphtest
stphplot

stcoxkm

streg

Declare data to be survival-time data
Split time-span records
Describe survival-time data
Summarize survival-time data
Generate, graph, list, and test the survivor
and cumulative hazard functions
Tabulate failure rate
Calculate person-time at risk and failure rates
Estimate Cox proportional hazards model
Test of Cox proportional hazards assumption
Graphical assessment of the Cox
proportional hazards assumption
Graphical assessment of the Cox
proportional hazards assumption
Estimate parametric survival models
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e Once the data have been stset we can use any of these commands without
having to specify the survival time or failure time variables.

e For example, to plot Kaplan-Meier estimates of the cause-specific survivor
function by sex and then fit a Cox proportional hazards model with sex and
calendar period as covariates

sts graph, by(sex)
stcox sex year8594
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Kaplan-Meier estimates in Stata

. stset surv_mm, failure(status==1,2)

. sts list
Beg. Net Survivor Std.

Time Total Fail Lost Function Error [95% CI]
2 35 2 0 0.9429 0.0392 0.7903 0.9854
3 33 1 0 0.9143 0.0473 0.7573 0.9715
5 32 1 0 0.8857 0.0538 0.7236 0.9555
7 31 1 0 0.8571 0.0591 0.6903 0.9379
8 30 1 0 0.8286 0.0637 0.6577 0.9191
9 29 1 0 0.8000 0.0676 0.6258 0.8992
11 28 1 0 0.7714 0.0710 0.5946 0.8785
13 27 0 1 0.7714 0.0710 0.5946 0.8785
14 26 0 1 0.7714 0.0710 0.5946 0.8785
19 25 1 0 0.7406 0.0745 0.5603 0.8558
22 24 1 0 0.7097 0.0776 0.5271 0.8323
25 23 0 1 0.7097 0.0776 0.5271 0.8323
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Plotting Kaplan-Meier estimates of S(t¢) using Stata

. use http://www.biostat3.net/download/colon_sample, clear
stset surv_mm, failure(status==1,2)
sts graph

Kaplan—Meier survival estimate
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use http://www.biostat3.net/download/colon
stset surv_mm, failure(status==1,2)
sts graph, by(stage)

Kaplan—Meier survival estimates, by stage
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Log rank test in Stata

. use colon_sample
stset surv_mm, failure(status==1,2)
sts test sex
Log-rank test for equality of survivor functions

| Events
sex | observed expected
_______ e
Male | 11 10.49
Female | 8 8.51
_______ e
Total | 19 19.00
chi2(1) = 0.06
Pr>chi2 = 0.8113

The log rank test is non-significant indicating no difference in survival
between males and females (if the assumptions hold —e.g. no uncontrolled
confounding, proportional hazards and non-informative censoring).
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The same test as a Cox model

. use colon_sample
. stset surv_mm, failure(status==1,2)
. Stcox sex

No. of subjects = 35 Number of obs = 35
No. of failures = 19
Time at risk = 1504

LR chi2(1) = 0.06

Log likelihood = -56.259206 Prob > chi2 = 0.8118

_t | HR Std. Err. Z P>|z| [95% Conf. Interval]

____+ _________________________________________________________

sex | 0.89501 .4179592 -0.24 0.812 .3583709 2.235266

. di (-0.24)"2
.0576
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Rates and person-time

A cohort study is characterized by persons being followed until either an event
or censoring.

The rate is a measure of event occurrence in the cohort.

Because persons in a cohort are followed for different lengths of time due to
censoring, we cannot calculate risks as "number of cases” divided by "number

of persons’ .
events

risk = —.
persons at risk

We must use a denominator which takes different lengths of follow-up into

account.
events

rate = — —
time at risk

Persons followed for a longer time have a larger chance of having the event,
since they are under observation for a longer time.
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If the cohort was followed for a longer time, then we would expect more
events to occur than if the cohort was followed for a shorter time (given that
the same number of persons were at risk).

Time-at-risk or person-time is measured in units of person-years,
person-months or similar.

Person-time is a method of measurement combining persons and time; it is
used to aggregate the total population at risk assuming that 10 people at risk
for one year is equivalent to 1 person at risk for 10 years.

If five people are followed for one year, they are followed for 5 person-years.
If two persons are followed for 2.5 years, they are followed for 5 person-years.

A rate is a measure of change in one quantity per unit of another quantity. In
epidemiology, rates typically have units ‘events per unit time’.

— Mortality rate: 0.5 deaths per 1,000 person-years
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— Incidence rate: 14 cancers per 100,000 person-years
Mortality rates and incidence rates are event rates.

The term ‘hazard rate’ (or ‘hazard’) is the generic term used in survival
analysis to describe the ‘event rate’. If, for example, the event of interest is
disease incidence then the hazard rate represents the incidence rate.

events

hazard rate = — —,
time at risk

If five people are followed for one year, and one experience a cancer, then the
incidence rate is 1/5 = 0.2 cases per person-year.

If two persons are followed for 2.5 years, and one experience a cancer, then
the incidence rate is 1/5 = 0.2 cases per person-year.
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e Often disease incidences are reported per 100,000 person-years. For example,
an incidence rate of 4 per 100,000 person-years is equivalent to 0.04 per
1,000 person-years and 0.00004 per person-year.
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Hazard rates and the hazard function, \(%)

e In contrast to the survivor function, which describes the probability of not
failing before time ¢, the hazard function focuses on the failure rate at time ¢
among those individuals who are alive at time t. So, the survival function is
formally defined for a random time variable T' by

S(t)=Pr(T >t)=1- F(1). (4)
where F'(t) is the failure proportion (aka the cumulative density function).

e The hazard function is formally defined for a random time variable T' by

Prit <T <t At|T>t
Alt) = lim ests AJ; 29
—

e [ he hazard function shows how the hazard rate varies over time.
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The hazard function, A(t), is the instantaneous event rate at time ¢,
conditional on survival up to time t.

It can be thought of the 'speed with which the cohort experiences the event
over time' or an 'instantaneous risk of the event over time’.

From Equation 5, one can see that A(¢)At may be viewed as the
‘approximate’ probability of an individual who is alive at time ¢t experiencing
the event in the next small time interval At.

The units are events per unit time.

Note that the hazard is a rate, not a probability, so A(¢) can take on any
value between zero and infinity, as opposed to S(t) which is restricted to the
interval [0, 1].

A lower value for \(¢) implies a higher value for S(t) and vice-versa.
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e One relationship of particular importance is

S(t) = exp —/)\(s)ds (6)

— eXp(_A(t))v

where A(?) is called the cumulative hazard (or integrated hazard) at time t.
The cumulative hazard has no simple interpretation and is rarely used or
reported for epidemiological purposes.
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Constant and time-varying rates

Rates can be constant over time, or they can vary over time. [Here: time
means 'time scale’, e.g. age, time-since-diagnosis, etc.]

If the rate is constant, then it can easily be estimated as

events

hazard rate = — —
time at risk

This is an overall rate or average rate which is assumed to be the same (i.e.
constant) across time.

If the rate is time-varying, however, then we must account for the time scale
when we estimate the rate.

Rates may be constant on one time scale, but vary across another time scale.
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e |t is also important to separate between 'time at risk’ (i.e. amount of risk
time in the denominator) and 'time scale’ (i.e. on which scale is the risk time
measured).
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Choice of time scale

There are several time scales along which rates might vary. These differ from
one another only in the choice of time origin, the point at which time is zero.

Consider the following questions?

— What is the time?
— How old are you?
— For how long have you lived at your current address?

What is the time origin for each? When was time zero? When did the clock
start?

In which units did you specify time? Could different units have been used?

Time progresses in the same manner but, in answering these questions, we
have applied a different time origin and used different units.
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Change in time scale - change in alignment of risk times

e Same cohort, same amount of risk time, but different time scales.
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Figure 4. Calendar time (left) and time from entry in years (right)
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e Same constant (average, overall) rate for both time scales, but different
time-varying rates across the time scales.

e The time-varying rates depend on where the events occur and where the risk
time is distributed along the time scale.
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Common time scales in epidemiology

Origin Time scale

Birth Age

A fixed date Calendar time

First exposure Time exposed

Entry into study Time in study
Disease onset Time since onset
Diagnosis Time since diagnosis

Start of treatment  Time on treatment

e In many of the methods used in survival analysis, effects are adjusted for the
underlying time scale. Choice of time scale therefore has important
implications.

e On many time scales, subjects do not enter follow-up at the time origin, t = 0.
e To deal with these issues stset has two additional options, 'origin’ to specify
the origin of time, and 'enter’ to specify the time of entry to the study (when

a person starts being at risk).
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Time scales in the diet data

We will stset the diet data using three different time scales.

In the diet data we have the following variables
- date of entry = doe

- date of exit = dox

- event indicator = chd

Stset will generate time variables (start and end) needed for the analysis, and
also set the time scale for the analysis.

To stset the time scale as time since entry, we specify doe as origin:
stset dox, fail(chd) enter(doe) origin(doe) scale(365.24)

Each individual enters the study (becomes ‘at risk') at the date specified by
doe.
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The date of entry is also the time origin (time zero).
By specifying scale(365.24) we are scaling the time unit from days to years.
To use attained age as the time scale we specify

stset dox, fail(chd) enter(doe) origin(dob) scale(365.24)

Individuals enter the study at doe (as before) but the time origin is now the
date of birth.

To use calendar time as the time scale we specify a fixed date as the time
origin. For example

. stset dox, fail(chd) enter(doe) origin(d(1/1/1900))

Rates may be constant over one time scale, while they may vary over another
time scale.
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e Time varying rates can be estimated as average rates (events over
person-time) within segments of time. If we put a smoother across those
segments, we may see the following graphs.
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CHD rate with time-since-entry as the time scale
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CHD rate with attained age as the time scale
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CHD rate with calendar time as the time scale
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Estimating CHD rates in the diet data

e We first stset the data using time since entry as the timescale.

. stset dox, fail(chd) origin(doe) enter(doe) scale(365.24) id(id)
failure event: <chd != 0 & chd < .
obs. time interval: (dox[_n-1], dox]
exit on or before: failure
t for analysis: (time-origin)/365.24
origin: time doe
337 total obs.
O exclusions
337 obs. remaining, representing
337 subjects
46 failures in single failure-per-subject data
4603.669 total analysis time at risk, at risk from t = 0
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e [o estimate the overall rate of CHD

. strate, per(1000)
failure _d: chd
analysis time _t: (dox-origin)/365.24
origin: time doe
Estimated rates (per 1000) and lower/upper bounds of 95% CI
(337 records included in the analysis)

| 46 4.6038 9.9918  7.4841 13.3397 |

e D is number of events; Y is person-time at risk (in units of 1000 years).

e The overall (average) rate is D/Y, i.e. 9.99 events per 1000 person-years. It
will be the same, regardless of which time scale we stset the data on (try

this!).
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Estimating CHD rates by exposure (energy intake)

e The stptime command tabulates the number of events and person-time at
risk and calculates event rates.

. stptime, by(hieng) per(1000)
failure _d: chd

analysis time _t: (dox-origin)/365.24
origin: time doe

hieng | person-time failures rate  [95% Conf. Interval]
______ +______________________________________________________

low | 2059.4305 28 13.595992  9.387478 19.69123
high | 2544 .2382 18 7.0748093 4.457431 11.2291
______ +______________________________________________________
total | 4603.6687 46  9.9920309  7.484296 13.34002

e Note that person-time is in years but the rates are per 1000 years.

e The rates represent the overall rates of CHD in each group during follow-up.
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e The strate command performs similar calculations.

strate hieng, per(1000)
failure _d: chd
analysis time _t: (dox-origin)/365.24
origin: time doe
Estimated rates (per 1000) and lower/upper bounds of 957 CI
(337 records included in the analysis)

| low 28 2.0594 13.5960 9.3875 19.6912 |
| high 18  2.5442 7.0748 4.4574 11.2291 |

e D is number of events; Y is person-time at risk (in units of 1000 years).
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The incidence rate ratio (IRR) for individuals with a high compared to low
energy intake is 7.1/13.6 = 0.52.

That is, without controlling for any possible confounding factors, we estimate
that individuals with a high energy intake have a CHD risk that is
approximately half that of individuals with a low energy intake.

This is sometimes called a ‘crude estimate’; it is not adjusted for potential
confounders.

Is this a true effect? What important confounder might we need to consider?
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Summary of Day 1

Time-to-event analysis (survival analysis) is necessary when

— We are interested in studying the time to an event, e.g. time to diagnosis,
time to death

— Individuals in a study are followed for different lengths of time, and therefore
are ‘at risk’ for different amounts of time, e.g. in cohort studies.

The outcome in survival analysis consists of both an event indicator (0/1)
and a time dimension (continuous).

The outcome can be expressed as either a survival proportion or an event rate
(hazard). Comparison between groups are primarily made using hazard ratios.

The survivor function (survival proportion) can be estimated using several
alternative methods, e.g. the Kaplan-Meier method and the life table method.

A rate is defined as events divided by total time-at-risk, where time at risk is
usually measured in person-years, person-months etc.
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e The rates can vary across various time scales, e.g. time since entry, attained
age, calendar period.

e The log rank test can be used to test for differences in survival, but is rarely
used in observational epidemiology.

e |n observational epidemiology we prefer modelling since it:

— enables us to compare survival between exposure categories while controlling
for confounding (although we can also perform an adjusted log rank test).

— places a focus on estimation rather than testing (i.e., we obtain estimated
hazard ratios and Cls).

— enables us to study effect modification.

— Is extentable in other useful ways.
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100.

101.

102.

103.

104.

Exercises for Day 1

Hand calculation: Kaplan-Meier estimates of cause-specific survival (35
patients)

Kaplan-Meier estimates of cause-specific survival using Stata (35 patients)
Kaplan-Meier estimates in presence of ties

Melanoma: Comparing survival proportions and mortality rates according to
stage

Localised melanoma: Comparing estimates of cause-specific survival between
periods; first graphically and then using the log rank test
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Appendix day 1: Life table (actuarial) method for
estimating S(t)

Also known as the ‘actuarial method’. The approach is to divide the period of
observation into a series of time intervals and estimate the conditional
(interval-specific) survival proportion for each interval.

The cumulative survivor function, S(t), at the end of a specified interval is
then given by the product of the interval-specific survival proportions for all
intervals up to and including the specified interval.

In the absence of censoring, the interval-specific survival proportion is
p = (I —d)/l, where d is the number of events (deaths) observed during the
interval and [ is the number of patients alive at the start of the interval.

In the presence of censoring, it is assumed that censoring occurs uniformly
throughout the interval such that each individual with a censored survival
time is at risk for, on average, half of the interval. This assumption is known
as the actuarial assumption.
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e The effective number of patients at risk during the interval is given by
" =1 — iw where [ is the number of patients alive at the start of the interval
and w is the number of censorings during the interval.

e The estimated interval-specific survival proportion is then given by

p=("—-d)/l.

e The cumulative survival is estimated as the product of conditional survival
proportions, where the estimate of each conditional survival proportion is
based upon only those individuals under follow-up.

k
S(t) = sz'
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Table 3: Life table with annual interval for the 35 patients.

time [ d w ! p S(t)
0-1) 35 8 0 35.0 077143 0.77143
1-2) 27 2 2 26.0 0.92308 0.71209
2-3) 23 5 4 21.0 0.76190 0.54254
3-4) 14 2 1 135 0.85185 0.46217
4-5) 11 0 1 10.5 1.00000 0.46217
5-6) 10 0 0 10.0 1.00000 0.46217
6-7) 10 0 3 8.5 1.00000 0.46217
7-8) I 0 1 6.5 1.00000 0.46217
8-9) 6 2 3 4.5 0.55556 0.25676
9-10) 1 0 1 0.5 1.00000 0.25676

[ is the number alive at the start of the interval
d is the number of events (deaths) during the interval

w is the number of censorings (withdrawals) during the interval

!’ is the effective number at risk for the interval

p is the interval-specific survival proportion
S(t) is the estimated cumulative survivor function (proportion) at the end of the interval
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Summary: nonparametric estimation of S(¢)

1. Split follow-up into intervals (timebands). If there are both deaths and
censorings within an interval then

K-M: Assume the events precede the censorings, that is, everyone is at risk when
the events occur.
Life table: Assume half of the censored individuals are at risk when the events occur.
2. Estimate conditional probabilities of surviving each interval
pi=1—d;/l;

where d; is the number of events and [; number at risk for interval <.

3. S(t) is the product of the conditional probabilities up to time ¢.

S(ty) = sz'
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The only difference between the Kaplan-Meier method and the life table
method is the approach to dealing with ties (which affects the value of n; in
estimating the conditional probabilities), and how the intervals are chosen.

The Kaplan-Meier approach is slightly biased in the presence of ties so one
should define time as accurately as possible (e.g., don’t use time in months if
you have time in days) in order to minimise the number of ties.

If survival times are generated on a truly discrete scale (e.g., patients are
contacted annually to ascertain vital status) and ties are common then the
life table approach is preferable.

The life table method can, however, also be used with many small intervals.
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Appendix day 1: Estimating the standard error and
confidence intervals for estimated survival proportions

e The most widely used method for estimating the standard error of the
estimated survival proportion is the method described by Greenwood

(1926) [9, 12].
e Appropriate for both the life table and Kaplan-Meier methods.
e Appropriate for both observed and cause-specific survival.

e Known as Greenwood’s method or Greenwood’s formula. The formula,

1
2

d;
T d| 7

SE(1psi) = 11 Zl

J=1
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(where [ is the number of patients alive at the start of the interval, w is the
number of censorings during the interval, and I’ = [ — Lw) is slightly laborious
for hand calculation, but readily available in many computer programs.

e This is the default method for the software used in this course.

e Non-integer values for [, e.g. I. = 20.5, do not cause any problems in
practical use.

e For a single interval, Equation 7 reduces to

SEw) = } = /1= p/,

which is the familiar binomial formula for the standard error of the observed
interval-specific survival proportion based on [} trials.

e |t can also be shown for the general case that Equation 7 reduces to the
binomial standard error in the absence of censoring.
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Confidence intervals can be calculated for any estimated survival proportion in
order to provide a measure of uncertainty associated with the point estimate.

A 95% confidence interval (Cl) is an interval, i.e. a range of values, such that
under repeated sampling, the true survival proportion will be contained in the
interval 95% of the time (if the model is correct).

The Cl is often called an interval estimate for the true survival proportion,
while the estimated survival proportion is called the point estimate.

A confidence interval for the true survival proportion can be obtained by
assuming that the estimated survival proportion is normally distributed
around the true value with estimated variance given by the square of the
standard error.

A two-sided 100(1 — «)% confidence interval ranges from p — z,/2SE(p) to
P+ Zo/2SE(p), where p is the estimated survival proportion (which can be an
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interval-specific or cumulative), SE(p) the associated standard error, and z, /2
the upper a/2 percentage point of the standard normal distribution.

For a 95% confidence interval, z, /2 = 1.96, and for a 99% confidence
Interval, Zoj2 = 2.98.

The standard error of the observed and cause-specific survival proportion can
be obtained using Greenwood's method (slide 110).

As a rule of thumb, the normal approximation for a single interval 7 is usually
appropriate when both I/p; and I}(1 — p;) are greater than or equal to 5 [1].

Confidence intervals obtained in this way are symmetric about the point
estimate and can sometimes contain implausible values for the survival
proportion, i.e., values less than zero or greater than one.

One method of obtaining confidence intervals for the observed survival
proportion in the range [0,1] is to transform the estimate to a value in the
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range |—00, 00, obtain a confidence interval for the transformed value, and
then back-transform the confidence interval to [0,1].

e One such transformation is the complementary log-log transformation,
In[— In(p)], which is equivalent to constructing the confidence intervals on

the log cumulative hazard scale.

e To estimate confidence intervals for the survival proportion using this method,
we first transform the estimated cumulative observed survival rate (OSR).

e We will write this transformation as g(OSR) = In|— In(OSR)], where g is the
complementary log-log transformation.

e We also require an estimate of the variance of the OSR on the log hazard
scale.

e Using a Taylor series approximation?, the variance of a function, g, of a

*In this setting, this is called the delta method.
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random variable, X, can be approximated by

varlg ()} ~ { %4 }2var<X>

e |f we denote the cumulative observed survival proportion by X then, noting

e (0] 1 df(X)
dx FX) dX
we have
1
var{g(X)} = var{In[— In(X)|} = X 11(I(X)Pvar(X).

e An estimated 95% confidence interval on the log hazard scale is therefore
given by g(OSR) + 1.964/var{g(OSR)}, which is then back-transformed to
give a 95% confidence interval for the OSR.
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Topics for Day 2

e Estimating and modelling constant rates, using Poisson regression

e Confounding by time scale and time-varying rates
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A model for the rate

e When working with rates, we believe that effects are most likely to be
multiplicative.

e That is, we believe that the rate in the high energy group (A1) is likely to be

a multiple of the rate in the low energy group (Ag). The multiplication factor
is the incidence rate ratio, 6.

A1 = Ag X 0, for example, 7.1 = 13.6 x 0.52

A
IRR = )\—1 = 0, for example, 0.52 = 7.1/13.6
0
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If the explanatory variable X is equal to 1 for individuals with a high energy
intake and 0 for individuals with a low energy intake then we can write

)\(X) = )\0 X 9X

So for each increase of one unit in X the rate increases with a multiple of 6
i.e. the effects are multiplicative (we multiply the constant).

That is,
A= Ao when X =0
A= Ao when X =1
For instance, the rate Ay among the individuals with high energy intake is

M=A1)=Xx0"'=13.6x052="7.1
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e |n practice, it is more convenient to work on a logarithmic scale.

A = Mg x 6%
In(A) = In(Xg x 6%)
= In(X\) + In(6)
= In(\g) +In(9)X
In(A\) = Bo+ 54X

where By = In()\g) is the log baseline rate and 31 = In(#) is the log IRR, or
log rate ratio. [This is a key result!]

e On the log scale, the effects are additive. For an increase of one unit in X,
the log rate increases with an constant In(#), or 51 (we add the constant).

e In(\) = By + 51X is a Poisson regression model with one binary explanatory
variable, X.
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e Exercise: What are the estimates of 5y and (317
e The estimate of 3y is the log of the rate at baseline, In(13.6)=2.61

e The estimate of 37 is the log of the IRR comparing group 1 to group 0,
In(0.52)=-0.65
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Three regression models commonly applied in epidemiology

Linear regression
p= 0o+ /X

Logistic regression

1n(17_r71-> = By + 51X

Poisson regression
In(A) = Bo + 1 X

In each case (31 is the effect per unit of X, measured as a change in the mean

(linear regression); the change in the log odds (logistic regression); the
change in the log rate (Poisson regression).
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The effect of high energy, using Poisson regression

hieng X D Y Rate per pyr

low 0 28 2059.4 0.01360
high 1 18 25442 0.00707

e |f we assume a Poisson regression model

ln()\) — 60 —|— 51X
X =0:1n(28/2059.4) = (o= —4.3
X =1:1n(18/2544.2) = po+ B
B 18/2544.2 B
In(/RR) = In (28/2059.4) = b

~0.6532 = B = In(IRR)
0.52 = exp(B1) = IRR
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Poisson regression in Stata

. poisson chd hieng, expos(y)

chd | Coef. [957, Conf. Intervall]
______ e
hieng | -.6532341 -1.245357 -.0611114
_cons | -4.,29798 -4.668379 -3.927582

on a log scale

. poisson chd hieng, expos(y) irr
chd | IRR  [95% Conf. Interval]
________ +_________________________________

hieng | .5203602 . 2878382 .9407184

on a ratio scale

This is not a st command, survival time must be specified in a separate
variable, .
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The model is estimated using the method of maximum likelihood.

Confidence intervals are constructed by assuming the estimated regression
parameters are normally distributed. 95% Cl :8; £ 1.96 stderr(5;)

That is, confidence intervals are constructed on the log scale, as is standard
for ratio measures.

As such, the Cl for the IRR is not symmetric around the point estimate.

We see that the confidence limits for the IRR are simply the exponentiated
limits of the In IRR, and turned around.

upper 95% CI IRR: exp(lower limit for 5;) = exp(B1 — 1.96 stderr(51))
lower 95% CI IRR: exp(upper limit for 51) = exp(81 + 1.96 stderr(51))
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e To fit a Poisson regression model, we can also use the streg (which fits the
model in the framework of parametric survival models) or glm (generalised
linear model) commands.
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What happened to the time scale?

The Poisson model we just fitted did not take into account that rates may
vary over follow-up time.

The data were stset using time since entry as time scale, but the rate we
estimated was the ‘overall rate’ (constant rate, average rate) of CHD
throughout the follow-up, i.e. simply all events of CHD divided by total
persontime at risk.

When we estimate the overall rate, we assume that the rates (13.6 per 1,000
person-years among low energy group, and 7.1 among high energy group) are
constant throughout the follow-up time.

We are more interested in modelling rates which vary over time. To
understand this part, and the rest of the course, it is important to know how
to model main effects and interactions. We will therefore have now have a
look at how to model main effects and interactions, in general, in Poisson
regression, while assuming constant rates over follow-up.
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Time varying rates and confounding by time

So far, we have modelled the overall rate, i.e. a constant rate throughout the
follow-up.

We can model how this overall rate vary according to exposure variables using
main effects models and interaction models. (See separate lecture if you are
not familiar with main effects models and models including interactions).

These models are general for many kinds of exposure variables.
In survival analysis, time (i.e. time scale) is a special variable (exposure).

Now, we will look at how to model and adjust for time (time scale) when it
confounds the effect of interest.

The elegant way we can model time (time scale) is one of the beauties of
survival analysis.
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e We will look at time as a confounder of the rates and time as an
effect-modifier of other variables (later on).

e Important to remember, risk time (amount of time at risk) is different from
time scale (where on a scale is the risk time distributed).
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Confounding

Confounding occurs when the association between an exposure and an
outcome is induced /altered by a third factor influencing both the exposure
and outcome.

For example, if the exposure is smoking and the outcome is death, and
smoking is more common among elderly, an observed association between
smoking and death may simply be an effect of age. The age distribution
among smokers differs from the age distribution among non-smokers.

We can adjust for confounding by conditioning on the confounder via
stratification or adjusting in a regression model.

Confounding by time (i.e. time scale) is similar, i.e. where is the person-time
distributed along the time scale for different exposure groups.

We shall use the colon cancer data, where patients were diagnosed 1975-1984
and 1985-1994, with follow-up for death until 1995.
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For which calendar period is mortality lowest?

0.000.250.500.751.00

0 .02 .04 .06 .08

Kaplan-Meier survival estimates

analysis time

year8594 = Diagnosed 75-84

year8594 = Diagnosed 85-94

Smoothed hazard estimates

10

analysis time

year8594 = Diagnosed 75-84

year8594 = Diagnosed 85-94

10
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For which calendar period is mortality lowest?

. use colon, clear
. stset surv_mm if stage==1, failure(status==1) scale(12) exit(120)
. strate year8594, per(1000)

Estimated rates (per 1000) and lower/upper bounds of 95) confidence intervals
(6274 records included in the analysis)

| Diagnosed 75-84 862 15.7531 54.719 51.186  58.497 |
| Diagnosed 85-94 825 15.2024 54.268 50.688 58.100 |

e The graphs suggest that patients diagnosed in the recent period have lower
mortality (better survival) but the estimated (overall) rates suggest that they
are similar.
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The end of follow-up is 1995. We have restricted to 10 years of follow-up
(120 months).

Those diagnosed 1975-84 are all followed for up to 10 years, whereas those
diagnosed 1985-94 are followed for at most 10 years (and many will be
followed for less than 10 years due to end of study in 1995).

So, those diagnosed 1985-94 have shorter follow-up. Their person-time will
be distributed close to diagnosis date, and the overall (average) rate will be
weighted towards the higher early mortality.

The rates are confounded by follow-up time.

Hence, the overall rates look very similar, instead of a lower rate in 1985-94
that we would expect.
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e If we restrict the calculation to first five years (60 months) of follow-up, the
rates are more what we would expect with higher rate in the early period
(1975-84) as indicated in the graph.

. stset surv_mm if stage==1, failure(status==1) scale(12) exit(60)
. strate year8594, per(1000)

Estimated rates (per 1000) and lower/upper bounds of 95J confidence intervals
(6274 records included in the analysis)

| Diagnosed 75-84 748 9.5836 78.050 72.652 83.848 |
| Diagnosed 85-94 745 12.1193 61.472 57.213 66.049 |

e This indicates that it is important to adjust for follow-up time when
estimating rates and rate ratios.
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e Because different exposure groups have different distributions of person-time
along the time scale, the overall rate may be biased (over- or
under-estimated).
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Time as a confounder

If the rate is constant over time, then time will not confound the overall

estimate of the rate. (A constant rate means that time is not associated with

the rate.)

When the rate changes with time then time may confound the effect of
exposure.

We will, for the moment, assume that the rates are constant within broad
time bands but can change from band to band.

This approach (categorising a metric variable and assuming the effect is
constant within each category) is standard in epidemiology.

We often categorise metric variables — the only difference here is that the
variable is ‘time’.
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e Consider a group of subjects with rates Ay during band 1 (0-5 years), As
during band 2 (5-10 years), etc.

A1 A2 A3

3
Subject 1 @

5 4
Subject 2 |

5 5 2
Subject 3 ®

0 5 10 15

Time (years)

e What are the estimated failure rates, \{, A2, A3, for each of the bands?
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Splitting the records by follow-up time

e A convenient way to fit these models using a computer is to replace the single
record for this subject by three new records, one for each band of observation.

e The new subject—band records can be treated as independent records.
subject timeband follow-up failure

1 0-5 3 1
2 0-5 5 0
2 5-10 4 0
3 0-5 5 0
3 5-10 5 0
3 10-15 2 1

e The rate for timeband 0-5 is then 1/(3+5+5), and so on for other timebands.

e This method can be used whether rates are varying simply as a function of
time or In response to some time—varying exposure.
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System variables created by stset
t0 time at entry
t  time at exit
d  failure indicator
st inclusion indicator

e For example, to stset the Diet data with time since entry as the time scale.

. use http://www.biostat3.net/download/diet
. stset dox, id(id) fail(chd) origin(doe) enter(doe) sc(365.24)

. list id _tO _t _d _st doe dox in 1/5, clean

id _to _t _d _st doe dox
127 0) 16.791239 0] 1 16Feb1960 01Dec1976
200 0] 19.958932 0 1 16Dec1956 01Dec1976
198 0) 19.958932 0 1 16Dec1956 01Dec1976
222 0) 15.394935 0] 1 16Feb1957 10Jull1972
305 0 1.4948665 1 1 16Jan1960 15Jul1961
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Splitting on ‘time in study’ (time since entry)

. use http://www.biostat3.net/download/diet
. stset dox, id(id) failure(chd) origin(doe) ent(doe) sc(365.24)

e |t is good to check what the data looks like BEFORE splitting!

. list id _tO0 _t _d _st if i1d==78, clean
id _t0 _t _d _st
28. 78 o) 5.6180698 1 1

e Split the data using the stsplit command, which will also generate a
timeband variable

. stsplit timeband, at(0(2)20) trim
(0O + 4 obs. trimmed due to lower and upper bounds)
(2122 observations (episodes) created)

e |t is good to check what the data looks like AFTER splitting!
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. list id timeband _tO _t _d _st if id==78, clean

id timeband _to _t _d _st
189. 78 o) o) 2 0) 1
190. 78 2 2 4 0) 1
191. 78 4 4 5.6180698 1 1

e Person ID=78 was followed up for 5.618 years, and when we split the record
we got three rows of data, one for each time band 0-2, 2-4, 4-6 years where
this person contributes risk time.
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Rates for different time bands

. strate timeband, per(1000)

- +
| timeband D Y Rate Lower Upper |
l---- |
| 0 6 0.6658 9.01205 4.04876 20.05973 |
| 2 3 0.6499 4.61589 1.48872 14.31189 |
| 4 11 0.6187 17.77860 9.84579 32.10291 |
| 6 8 0.5947 13.45180 6.72721 26.89835 |
| 3 1 0.5670 1.76370 0.24844 12.52060 |
l---- |
| 10 8 0.4919 16.26292 8.13305 32.51949 |
| 12 2 0.4148 4.82158 1.20586 19.27877 |
| 14 5 0.3619 13.81571 5.75048 33.19266 |
| 16 2 0.1778 11.24988 2.81357 44 .98197 |
| 18 o) 0.0610 0.00000 |
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e We can plot the rates over timebands. This produces a step function.

Rates over time

.03
|

.02

Predicted hazard

01
|

0 5 10 15 20
Timeband
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e Poisson regression can also be performed using the streg command. This is
preferable when the data have been ‘stsplit’ since streg respects the internal
variables (_d, _tO, _t, and _st) created by stset and stsplit.

. streg hieng, dist(exp)

Exponential regression -- log relative-hazard form
No. of subjects = 337 Number of obs = 2455
No. of failures = 46
Time at risk = 4603.504449
LR chi2(1) = 4.82

Log likelihood =  -175.00017 Prob > chi2 = 0.0282

_t | Haz. Ratio Std. Err. Z P>|z| [95% Conf. Intervall
______ o
hieng | .5203748 .15672099 -2.16 0.031 .2878463 .9407449

cons | .0135959 .0025694  -22.74 0.000 .0093874 .0196911

e This rate ratio 0.520 is not adjusted for time.
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e The effect of hieng controlled for timeband is found with:

. streg hieng i.timeband, dist(exp)
_t | Haz. Ratio

timeband
2
4
6
8
10
12
14
16
18

.5192324

.5135604
1.994108
1.509821

.197761
1.808417
.5339264
1.536019
1.261454
1.29e-06

.012205

Std. Err.

.1568783

.363132
1.012072
.8154207
.2136135
. 9766387
.4359361
.9300917
1.029979
.0015518
.0051785

.94
.36

0.76

.50
.10
et
.71
.28
.01
.38

[95% Conf.

.2871997

.1284451
.7374578
.5238543
.0238071
.6274883
.1077703
.468788

.2546036

0
0.000

e The estimated rate ratio adjusted for time is 0.519.

Intervall

.9387276

2.0563361
5.392127
4.351515

1.64276
5.211844
2.645232

5.032884

6.249978

.0053135

.0280349
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There is no reason to believe that time-on-study would be a confounder for
these data. This would, however, be of interest in the cancer examples.

Because this is a main effects model, the effect of hieng is assumed to the
same (0.519) across all timebands. (If we believed the effect of hieng was
different over time, then we would need to include interaction between hieng
and timeband.)

The ratio for hieng is adjusted for timeband. Meaning that we are comparing
persons within the same timeband with respect to energy intake.

Again, we can plot the rates over timebands for high and low energy intake.
The rate ratio (ratio between curves) will be the same (0.519) for all
timebands, since we have assumed a main effect model.
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Predicted hazard

.02 .03 .04 .05

.01

Rates over time by hieng
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e We fitted a main effects model, and can calculate the rate ratios using the

same technique as we did earlier.

timeband hieng=0 hieng=1

0 1.0 0.52

2 0.51 0.52 x 0.51
4 1.99 0.52 x 1.99
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Splitting the follow—up on the age scale

e Attained age is a possible confounder for the diet study, young and old people
may differ in both energy intake and risk for CHD. Attained age is more
interesting as a potential confounder than age at entry.

. stset dox, fail(chd) enter(doe) origin(dob) sc(365.24) id(id)
. list id _tO _t _d _st if id==163
id t0 t d _st

163 47.55373  60.922656 1 1

. stsplit ageband, at(30,40,50,60,70) trim
. list id ageband _tO _t _d _st if id==163

id ageband _to0 _t _d _st
163 40 47.55373 50 0 1
163 50 50 60 0 1
163 60 60 60.922656 1 1
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e We see that, as expected, the CHD incidence rate depends on attained age.

. strate ageband, per(1000)
_D

ageband
30
40
50
60

0
6
18
22

_Y
0.0963
0.9070
2.1070
1.4933

_Rate
0.0000
6.6152
8.5428
14 .7325
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The effect of hieng controlled for attained age

. streg hieng i.ageband, dist(exp)

_t | Haz. Ratio [95% Conf. Intervall
_____________ +___________________________________
hieng | . 5370252 .2967504 .9718473
|
ageband |
40 | 4865216 0
50 | 5963551 0
60 | 1.03e+07 0

e Poor choice of baseline for ageband!

150



e Let's use a different reference category.

. fvset base 40 ageband
. streg hieng i.ageband, dist(exp)

_t | Haz. Ratio  Std. Err Z P>|z|
_____________ +_______________________________________
hieng | .5370252  .1625226 -2.05  0.040

|

ageband |
30 | 2.06e-07 .0005733 -0.01 0.996
50 | 1.225752  .5786603 0.43 0.666
60 | 2.108791 . 9728264 1.62 0.106

e Is there evidence that the effect of hieng is confounded by attained age?

e Minor indication of confounding, the crude hieng estimate is 0.52, as we saw
in previous slides.
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Choice of time scale

If one possible time scale for your data (e.g. time-in-study, attained age,
calendar time) is a strong confounder (or mediator) of your exposure —
outcome association, then that time scale should preferably be chosen as the
underlying time scale.

For most disease incidences, age is a strong confounder and one way to adjust
for it is to choose attained age as the underlying time scale [20, 3, 4].

Thiebaut and Benichou [20] recommend using age as the timescale and
conclude ‘we strongly recommend not using time-on-study as the time scale
for analysing epidemiologic cohort data [where entry has no clinical or
biological relevance]'.

Select time scale for the analysis by listing all possible time scales and
characterize them as confounders, mediators or effect modifiers. Which time
scales are associated with the exposures and which are associated with the
outcome rates (plot rates over time scales).
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e The choice of time scale in the analysis should be based on:

1. Your research question: choose the time scale which has the most relevance
for your research question, sometimes the exposure is a time scale (e.g. how
does the incidence vary over age, how does mortality vary by
time-since-diagnosis)

2. Adjustment for time confounding: choose the time scale which has the

strongest confounding effect.
Age: often the strongest confounder in incidence studies

Calendar time: often a confounder, proxy for other phenomena (including
unmeasured confounders)

Time-since-entry (time on study, follow-up): often relevant in prognosis
studies, where entry is at diagnosis, i.e. entry has a meaning

Other: Time-since-exposure (e.g. time-since-medication or time-since-crime)
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A time scale is just like any other factor that you need to assess in terms of
whether it is an exposure, confounder, mediator or effect modifier.

A time scale as exposure: You may want to parameterise the time scale (so
not use Cox regression), since you are interested in the effect of time per se.

A time scale as confounder/mediator: You may want to choose the time scale
as main time scale in analysis. Parameters for time are less important if the
effect is well-known. E.g. we know that all-cause mortality increases with age,
so we do not need to estimate that effect. We may still want to adjust for
age very strongly (e.g. by fine time-splitting or using Cox regression).

A time scale as effect modifier: You want to include interaction terms with
time in the model (non-proportional hazards).

We have so far not covered Cox regression and non-proportional hazards, that
will be covered in the next lecture.
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Multiple time scales

In some situations, several time scales are confounders for the exposure -
outcome association.

For example, cancer incidence may vary both over age and calendar time.

In such situations, we must adjust for two time scales. This can be done both
in Poisson regression and in Cox regression.

Data can be split on several time scales.

In Poisson regression: Data must be split on all time scales that we wish to
adjust for.

In Cox regression: Data does not need to be split on the main time scale, but
must be split on all additional time scales we wish to adjust for (we get one
time scale adjusted for automatically).
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Summary of Day 2

e Rates can be modelled using Poisson regression, which estimates the baseline
hazard rate and the rate ratios for different exposure levels.

e The estimates of rates and rate ratios can be confounded by time (i.e. time
scale).

e To adjust for the time scale in Poisson regression, time-splitting is required.
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110.

111.

112.

Exercises for Day 2

Diet data: tabulating incidence rates and modelling with Poisson regression.

Localised melanoma: model cause-specific mortality with Poisson regression.
[this is a key exercise, next time we will fit a Cox model to the same data and

compare the results]

Diet data: Using Poisson regression to study the effect of energy intake
adjusting for confounders.
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Appendix Day 2: Statistical models

e Multiple regression models are important in that they allow simultaneous
estimation and testing of the effect of many prognostic factors on survival.

e The aim of statistical modelling is to derive a mathematical representation of
the relationship between an observed response variable and a number of
explanatory variables, together with a measure of the uncertainty of any such

relationship.

e The uses of a statistical model can be classified into the following three areas:

1. Descriptive: To describe any structure in the data and quantify the effect of
explanatory variables, and to study the pattern of any such associations;

2. Hypothesis testing: To statistically test whether an observed response variable
is associated with one or more explanatory variables; and

3. Prediction: For example, predicting excess mortality for a future time period,
or predicting the way in which the outcome may change if certain explanatory

variables changed in value.

158



Note that a statistical model is never true, but may be useful.

When making inference based on the model we assume that the model is true.

If the model is badly misspecified then inference will be erroneous.

It is therefore important to consider the validity of any assumptions (e.g.
proportional hazards) underlying the model and to check for evidence of
lack-of-fit.
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An introduction to generalised linear models, GLM

e A simple linear model (i.e. least squares regression) can be written as

y; = X3 + €;, where ¢; ~ N(0,0%). (8)

e For a generalised linear model (GLM), it is assumed that the probability
distribution function of the outcome, y;, belongs to the exponential family
(which includes the normal, binomial, and Poisson distributions), and that the
relationship between the expectation of y; and its linear predictor is given by
the link function g. That is,

where u; = E(y;) and g is the link function (which is monotonic and
differentiable).

e Many widely used models can be fitted in the framework of generalised linear
models. For example:
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e Linear regression — link: identity, error: normal

u; = x0.

e Poisson regression — link: log, error: Poisson

In(u;) = x0.

When modelling event rates, the outcome is y;/n;, where n; is person-time at
risk. The model can then be rewritten as

In(u;) = In(n;) + x5, where In(n;) is known as an offset term.

e |ogistic regression — link: logit, error: binomial

T

In(

) = xp,

1 — Uy
where m; = FE(y;/n;) is the outcome.
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e To define a generalised linear model, it is therefore necessary to specify

— the error distribution
— the link function

in addition to the outcome and explanatory variables.

e A logistic regression model could be fitted in SAS, for example, using the
following commands:

proc genmod data=test;
model y/n = x1 x2 / dist=bin link=logit;
run;

e The corresponding Stata command is:

. glm y x1 x2, family(binomial n) link(logit)
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Poisson regression is a GLM

In(rate) = x0

In(events/person-time) = x03

In(events) — In(person-time) = xf
In(events) = xf + In(person-time)

In(person-time) is known as an offset; it's a constant in the linear predictor.

Poisson regression can be fitted as a generalised linear model with

— outcome: number of events

— link: log

— error distribution: Poisson

— offset: logarithm of person-time
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Estimation of Poisson model as a GLM

. gen risktime=_t-_tO0

. glm _d hieng i.ageband

Generalized linear models

Optimization

Deviance
Pearson

Log likelihood

if _st==1, family(poiss) lnoff(risktime) eform

No. of obs 755

: ML Residual df 750
Scale parameter 1

=  313.146733 (1/df) Deviance . 417529
= 1938.800828 (1/df) Pearson 2.585068
AIC .5498632

= -202.5733665 BIC -4656.892

IRR Std. Err. P>|z]| [95% CI]
.5370429 .1625146 0.040 .2967746 .9718319
2.07e-06 .0018067 0.988 0 :
1.225663 .5785056 0.667 .4858933 3.091224
2.108589 .9726144 0.106 .85381563 5.207387
(exposure)
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Assessing goodness-of-fit of Poisson regression models

Since Poisson regression is a generalised linear model, methods of assessing
goodness-of-fit of GLMs can be applied (many of which you have seen
previously with logistic regression).

For a GLM fitted to non-sparse data, model goodness-of-fit can be assessed
using the deviance or the Pearson chi-square statistic.

Both the deviance and the Pearson chi-square statistic have an approximate
v? distribution under the assumption that the model fits, with degrees of
freedom equal to the number of observations minus the number of
parameters estimated in the model (including the intercept) [17].

The mean of a X% distribution is k, so if the model is a reasonable fit the
deviance and the Pearson statistic will be close to the residual df.

The deviance is the difference in twice the log likelihood between the fitted
model and what is called the saturated model.

165



The saturated model is the model which contains one parameter for every
observation, such that the fitted values equal the observed values.

For data which is cross-classified by k categorical variables, as cancer registry
data usually are, the saturated model contains all 2-way, 3-way, up to k-way
Interactions.

As such, if a model is fitted containing all main effects, the deviance is
essentially a test for interaction (where interaction is equivalent to
non-proportional excess hazards).

The asymptotic x? assumption for the deviance and the Pearson chi-square
statistic is only valid for ‘non-sparse’ data.
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A rule-of-thumb for chi-square based statistics of agreement between
observed and fitted values is that both the expected number of successes and
the expected number of failures must be 5 or more in at least 80% of the cells
and at least 1 in each cell.

In practice, individual-level data should be grouped.

The exact distributions of the deviance and the Pearson chi-square statistic
are not known, and there is no agreement in the literature regarding which is
the best measure of goodness-of-fit.

However, the two statistics should be similar for a model that provides a good
fit to the data, and a large discrepancy between the two statistics is generally
indicative of sparse data.

When data are sparse, we typically see a deviance less than the degrees of
freedom and a Pearson chi-square much greater than the degrees of freedom.
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e Values of the deviance and Pearson chi-square significantly greater than the
associated degrees of freedom can be due to a number of factors, including

1. an incorrectly specified functional form (an additive rather than a
multiplicative model may be appropriate);
2. overdispersion; or

3. the absence of important explanatory variables (or interactions) from the
model.

e In most cases, lack-of-fit is due to missing explanatory variables (or
interactions) from the model.

e Model goodness-of-fit can also be assessed using plots of residuals and
influence statistics.
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Example: Assessing goodness-of-fit for Poisson regression

. use colon if stage==1, clear

. stset surv_mm, failure(status==1) scale(12) id(id) exit(time 120)
. gen risktime=_t-_tO0

. glm _d year8594, family(poisson) eform lnoffset(risktime)

Generalized linear models No. of obs = 6274
Optimization : ML Residual df = 6272

Scale parameter = 1
Deviance = 9261.056188 (1/df) Deviance = 1.476571
Pearson = 94685.52343 (1/df) Pearson = 15.09654

The deviance and Pearson chi-square statistics are not interpretable for
individual data. We need to collapse the data into groups with the same
combinations of values on all the variables in the model.
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Asymptotic properties of the Pearson chi-square statistic
(by hand-waving)

2
The Pearson chi-square statistic has the form > % where O and E are
the observed and expected number of events for each observation and the
sum is over all observations.

The quantity r; = (O; — F;)/+/E; is the Pearson residual.

If the r; follow a normal distribution with mean zero and variance 1 then
Zle r? will be 3.

This becomes problematic for individual data, where O is either 0 or 1.

The distribution of residuals will be bimodal; one group for observations with
O = 0 one group for observations with O = 1.

That is, residuals will not be standard normal so the sum of the residuals
squared will not be y2.
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e By collapsing, we will have larger values for O and E and it is more likely that
the distribution of r = (O — E)/VE is symmetric around zero.

e Here we again refer to the rule-of-thumb for chi-square based statistics of
agreement between observed and fitted values; E should be 5 or more in at
least 80% of the cells and at least 1 in each cell.

e The same issue exists in logistic regression and the same solution (collapsing)
can be used.
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Example continued: assessing goodness-of-fit after
collapsing

e We have specified that our data are cross-classified by period (2 groups), age
(4 groups), and sex (2 groups). So we collapse on the combinations of values
from these variables. Then we fit the Poisson model to the collapsed data.

. collapse (sum) _d risktime , by(year8594 agegrp sex)

. glm _d year8594, family(poisson) eform lnoffset(risktime)

Generalized linear models No. of obs = 16
Optimization : ML Residual df = 14

Scale parameter = 1
Deviance = 248.1137278 (1/df) Deviance = 17.72241
Pearson = 262.5530674 (1/df) Pearson = 18.75379

e They are not shown above, but parameter estimates are identical for the
individual and collapsed data.
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If the model fits, the deviance and Pearson chi-square statistics should follow
a x? distribution with 14 degrees of freedom.

That is, the expected value of these two statistics is 14 (the expected value of
the x# distribution is k).

The Deviance and the Pearson statistic are far from the number of df's
(df=14). There is strong evidence of lack of fit.

Stata helps us out by presenting the values of the statistic divided by the df.

If the model fits these should be close to 1 (which is not the case here).

173



e If we include age and sex in the model

. glm _d year8594 i.agegrp sex, family(poisson) eform lnoffset(risktime)

Generalized linear models No. of obs = 16
Optimization : ML Residual df = 10

Scale parameter = 1
Deviance = 12.05963472 (1/df) Deviance = 1.205963
Pearson = 12.0560896 (1/df) Pearson = 1.205609

e There is no longer evidence of lack-of-fit. The scaled deviance is close to 1,
I.e. the deviance is almost equal to the number of df's.

o |f we fitted all main effects and still saw evidence of lack-of-fit then this might
suggest effect modification (i.e., interaction terms are required).
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Topics for Day 3

The Cox model
Comparison of Cox and Poisson regression
The proportional hazards assumption

Assessing the proportional hazards (PH) assumption
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Common forms for the hazard function (time-varying rates)

decreasing Increasing

constant

Time
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A bathtub-shaped hazard is appropriate for mortality in most human
populations followed from birth, where the hazard rate decreases to almost
zero after an initial period of infant mortality, and then starts to increase
again later in life.

A decreasing hazard function is appropriate for mortality following the
diagnosis of most types of cancer, where mortality due to the cancer is
highest immediately following diagnosis, and then decreases with time as
patients are cured of the cancer.

An increasing hazard function is appropriate for incidence rates of ageing
diseases.

A constant hazard function is often used for modelling the lifetime of
electronic components, but is also appropriate following the diagnosis of some
types of cancer, most notably cancers of the breast and prostate, where the
level of excess mortality due to the cancer is relatively constant over time and
persists even 15-20 years after diagnosis.
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e A constant hazard function implies that survival times can be described by an
exponential distribution (which has one parameter, the hazard \). This
distribution is ‘memoryless’ in that the expected survival time for any
individual is independent of how long the individual has survived so far.

e The average time to winning a prize for a regular lotto player, for example,
can be described by an exponential distribution.

e The survivor function has the same basic shape (a nonincreasing function
from 1 to 0) for all types of data and the hazard function is often a more
informative means of studying differences between patient groups.
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Shape of the hazard in Poisson regression

e The Poisson regression model is

111()\) p— 50 + 61X
A= exp(ﬁo + BlX)
A = exp(fo) exp(51X)

e The baseline hazard is constant in a Poisson regression, exp(/fy).
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e |f we add a categorical variable for time, e.g. time-since-entry in 1-year bands,
then the baseline hazard is a step function of time. The hazard is piecewise
constant in 1-year bands.

A = exp(fo + Bat[i2) + Patpa,3) + - -+ ) exp(51X)

where t[; ) is an indicator for time being in the interval [1,2), i.e. timeband.
Note that #y 1) if left out from the equation (it is assumed to be the reference
time band)

e \We can use piece-wise constant hazards to describe most shapes of hazard
functions approximately with a step function. (If we split time in finer
intervals, then sharper increases/decreases can be captured by the step
function.)

180



Mortality rate per 1000 person-years

600

400

200

Shape of hazard: step function

Time since diagnosis in years

No distant mets  --------- Distant mets
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The Poisson model is an example of a proportional hazards model.

Proportional hazards models

A proportional hazards model is on the form

A(E1X) = Ao(t) exp(BX)

The hazard at time ¢ for an individual with some covariate values, A(t|X), is

a multiple of the baseline, A\y(¢). The multiple is exp(8X).

This means that the hazards for different levels of X are proportional:

Yo = kY]

It also means that the ratio of hazards is constant and only depends on 3 and

X, regardless of t.

At X)
Ao(2)

= exp(BX)
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This means that a proportional hazards model estimates hazard ratios which
are constant over time, and that hazards are assumed to be proportional to
each other over time. [KEY message!]

Let's for example have a look at the colon cancer data.
Outcome is death due to colon carcinoma.

Interest is in the effect of clinical stage at diagnosis (distant metastases vs no
distant metastases).

183



use colon.dta, clear
drop if stage==0 // unknown

stset exit , failure(status==1) enter(dx) origin(dx) ///
scale(365.24) exit(time dx+3650)

gen distant=1 if stage==
replace distant=0 if stage<3

sts graph, by(distant) haz noboundary
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Smoothed empirical hazards (cancer—specific mortality rates)

sts graph, by(distant) hazard
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Time since diagnosis in years
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On the log scale we get

In[A(E|X)] = In[ho(t)] + BX.

The difference between two log hazards is a constant (5 regardless of ¢

In[A(HX)] — InAo(t)] = BX.

The two hazard curves are thus assumed to be parallel, i.e. constant
difference across ¢, on a log scale.

Hence, if we plot the hazard curves on a log scale, then the curves should be

parallel if the assumption of proportional hazards holds.
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Smoothed empirical hazards on log scale
sts graph, by(distant) hazard yscale(log)
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distant=1
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Time since diagnosis in years
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The Cox proportional hazards model

The Cox model is a proportional hazards model. (And so is the Poisson

model.)
A(t|X) = Ao(t) exp(BX)

However, the Cox model does not estimate the baseline hazard, A\o(t). It only
estimates the regression coefficients, S.

Although the baseline \y(t) is not estimated, the hazard ratios are adjusted
for time ¢, 1.e. time scale.

The Cox model is said to "automatically adjust for the underlying time scale”.

The most commonly applied model in medical time-to-event studies | [6].
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The shape of hazards in a Cox model

The Cox model does not make any assumption about the shape of the hazard
function or the distribution of survival times.

Instead, the baseline hazard is allowed to vary freely. The baseline hazard is
not even estimated (no parameters).

The Cox model only estimates hazard ratios relative to the baseline hazard.

In a Poisson model, the effect of time (timeband) could be moved from the
linear predictor into the baseline, \y(t). Similarly, for Cox, the baseline hazard
includes all the effect of time scale.

The ‘intercept’ in the Cox model [6], the hazard (event rate) for individuals

with all covariates X at the reference level, is an arbitrary function of time>,

often called the baseline hazard and denoted by \(%).

Stime t is the time scale and can be defined in many ways, e.g., attained age, time-on-study, calendar time, etc.
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Fit a Cox model to estimate the hazard ratio

. stcox distant
failure _d: status ==
analysis time _t: (exit-origin)/365.24
origin: time dx
enter on or after: time dx
exit on or before: time dx+3650

Cox regression —-- Breslow method for ties
No. of subjects = 13,208 Number of obs = 13,208
No. of failures = 7,122
Time at risk = 43957.41156
LR chi2(1) = 5449 .33
Log likelihood =  -61751.903 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. Z P>|z| [95% Conf. Interval]
_____________ +-—————————n——_-—_—_-,_—__—_,—,-—-———,-—,—,——,-—-t—t——-—-—t——_——r—rrrrrrr e — —
distant | 6.457862 .1665142 72.34 0.000 6.13961 6.792611
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Smoothed hazard function
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Fitted hazards from Cox model
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Smoothed hazard function

4 6.8

2

d S~ === distant=1

Fitted hazards from Cox model on log scale
stcurve, hazard atl(distant=0) at2(distant=1) yscale(log)

-7 7T~ distant=0

0 2 4 6 8 10

Time since diagnosis in years
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An analogous Poisson regression model?

. streg distant, dist(exp)

Exponential regression -- log relative-hazard form
No. of subjects = 13208 Number of obs = 13208
No. of failures = 7122
Time at risk = 44014.07294
LR chi2(1) = 8788.80
Log likelihood =  -19144.094 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. z P>|z]| [95% Conf. Intervall
_____________ o
distant | 10.04034 . 2473993 93.61 0.000 9.566966 10.563713
cons | .0690183 .0013572 -135.95 0.000 .0664088 .0717304

e |s this conceptually analogous to the Cox model with one predictor
(distant)?
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Fitted values: Poisson model with one predictor (distant)

800
|
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|

Mortality rate per 1000 person-years
200 400
] ]

0
|

0 2 4 6 8 10
Time since diagnosis in years

No distant mets  --------- Distant mets

e \We haven't controlled for time, whereas the Cox model does.

194



An analogous Poisson regression model

. stsplit fu, at(0(1)10)
(37458 observations (episodes) created)
. streg distant i.fu, dist(exp)

_t | Haz. Ratio Std. Err z P>|z| [95% Conf. Interval]
_____________ e
distant | 6.890447 .1758378 75.64 0.000 6.554288 T.243847
|
fu |
1 | .663664 .0204393 -13.31 0.000 .6247888 .704958
2 | .4041879 .0178799 -20.48 0.000 .3706202 .4407959
3 | .3008835 .0170792 -21.16 0.000 .2692039 .3362912
4 | .2511955 .0172521 -20.12 0.000 .2195591 .2873905
5 | .1754671 .0157037 -19.45 0.000 .1472368 .2091101
6 | .126706 .0145236 -18.02 0.000 .1012112 .1586229
7 | .0635093 .011113 -15.75 0.000 .0450705 .0894915
8 | .0506029 .0108263 -13.95 0.000 .0332708 .0769638
9 | .0732211 .0144196 -13.27 0.000 .0497745 .1077123
|
cons | .1523782 .0036926 -77.64 0.000 .1453099 .1597902
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Fitted values: Poisson regression model adjusted for time

Fitted values: Poisson regression adjusted for time
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e Once we adjust for time we get a similar estimate for the effect of distant.
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e The shape of the hazard is similar to the predicted hazards from the Cox
model.

e Both Cox and Poisson models are proportional hazards models.

e Both will give hazard ratios which are constant over time, exp(5).

Cox: A(t|X) = Xo(t)exp(BX)

Bo) exp(BX)

Poisson (constant rate): A(¢|X) = exp(
Poisson (time-varying rate): A\(t|X) = exp(By + Sitimeband; + ...) exp(5X)
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Example: Localised colon carcinoma 1975-1994

e We will fit a proportional hazards model to study the effect of sex, age (in 4
categories), and calendar period (2 categories) on cause-specific mortality
(only deaths due to colon cancer were considered events).

e We'll begin by restricting the data to localised cases only (stage=1).

use http://www.biostat3.net/download/colon, clear
(Colon carcinoma, all stages, 1975-94, follow-up to 1995)
. keep if stage==
(9290 observations deleted)
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e We stset the data where only deaths due to colon cancer (status=1) are
considered ‘failures’.

stset surv_mm, failure(status==1)
failure event: status ==
obs. time interval: (0, surv_mm]
exit on or before: failure

6274 total observations
O exclusions
6274 observations remaining, representing
1734 failures in single-record/single-failure data
427185 total analysis time at risk and under observation

at risk from t = 0
earliest observed entry t = 0
last observed exit t = 251.5

e Now we estimate the Cox model.
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. stcox sex i.agegrp year8594

Number of obs =

6274

197.23
0.0000

No. of subjects = 6274
No. of failures = 1734
Time at risk = 427185
Log likelihood =  -14348.889
_t | Haz. Ratio Std. Err
_____________ +
sex | .9151101 .0451776
|
agegrp |
45-59 | .9491689 .1314101
60-74 | 1.338501 .1682956
75+ | 2.24848 .2834768
|
year8594 | . 7548672 .0372669

LR chi2(5) =

Prob > chi?2 =
P>|z]| [95% Conf.
0.072 .8307126
0.706 . 723597
0.020 1.046148
0.000 1.756199
0.000 .6852479

1.008082

1.24506
1.712553
2.878751

.8315596
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The output commences with a description of the outcome and censoring
variable and a summary of the number of subjects and number of failures.

The default method for handling ties (the Breslow method) is used.

The test statistic LR chi2(5) = 197.23 is not especially informative. The
interpretation is that the 5 parameters in the model (as a group) are
statistically significantly associated with the outcome (P < 0.00005).

The defaut in Stata is to present hazard ratios (exp(/3)) rather than log
hazard ratios. The confidence intervals are constructed on the log scale, and
are therefore not symmetric for the hazard ratios (as we also saw for Poisson
regression).

The variable sex is coded as 1 for males and 2 for females. Since each
parameter represents the effect of a one unit increase in the corresponding
variable, the estimated hazard ratio for sex represents the ratio of the hazards
for females compared to males.
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That is, the estimated hazard ratio is 0.92 indicating that females have an
estimated 8% lower colon cancer mortality than males. There is some
evidence that the difference is statistically significant (P = 0.07).

The model assumes that the estimated hazard ratio of 0.92 is the same at
each and every point during follow-up and for all combinations of the other
covariates.

That is, the hazard ratio is the same for females diagnosed in 1975-1984 aged
0—44 (compared to males diagnosed in 1975-1984 aged 0-44) as it is for
females diagnosed in 1985-1994 aged 75+ (compared to males diagnosed in
1985-1994 aged 75+ ).

The indicator variable year8594 has the value 1 for patients diagnosed
during 1985-1994 and 0 for patients diagnosed during 1975-1984.
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The estimated hazard ratio is 0.75. We estimate that, after controlling for the
time scale, age and sex, patients diagnosed 1985-1994 have a 25% lower
mortality than patients diagnosed during 1975-1984. The difference is
statistically significant (P < 0.0005).

We chose to group age at diagnosis into four categories; 0—44, 45-59, 60-74,
and 754 vyears.

It is estimated that individuals aged 75+ at diagnosis experience 2.25 times
higher rate of death due to colon carcinoma than individuals aged 0—44 at
diagnosis, a difference which is statistically significant (P < 0.0005).

Similarly, individuals aged 60-74 at diagnosis have an estimated 34% higher
rate of death due to colon carcinoma than individuals aged 0—44 at diagnosis,
a difference which is statistically significant (P < 0.02).
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e These significance tests test the pairwise differences and tell us little about
the overall association between age and survival — we need to perform a
general test.

. testparm l.agegrp 2.agegrp 3.agegrp

(1) 1l.agegrp =0
( 2) 2.agegrp =0
( 3) 3.agegrp =0
chi2( 3) = 174.13
Prob > chi2 = 0.0000

e This is a Wald test of the null hypothesis that all age parameters are equal to
zero, i.e. that age is not associated with the outcome.

e \We see that there is strong evidence against the null hypothesis, i.e. we
conclude that age is significantly associated with survival time.
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e The Wald test is an approximation to the likelihood ratio test, which
compares the likelihood between models.

e To perform a likelihood ratio test we fit the reduced model (the model
without age) and see that the log likelihood is —14436.387.

. stcox sex year8594

No. of subjects = 6274 Number of obs = 6274

No. of failures = 1734

Time at risk = 424049.72 LR chi2(2) = 22.23

Log likelihood =  -14436.387 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. Z P>|z| [95% Conf. Interval]

_________ e
sex | .9978866 .0487896 -0.04 0.965 .9066997 1.098244

year8594 | . 79287 .0390053 -4.72 0.000 .7199909 .8731261

e The log likelihood for the model containing age is —14348.889; for the model
excluding age it is —14436.387.
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e The likelihood ratio test statistic for the association of age with survival is

calculated as 2 x (—14348.889 — (—14436.387)) = 175.0, which is compared
to a x? distribution with 3 degrees of freedom (P=0.0001).

e We see that the Wald test statistic (174.1) is very similar in value to the
likelihood ratio test statistic (175.0).

e You can also get Stata to calculate the likelihood ratio test statistic for you
(you have to explicitly fit both models and save the estimates for the first).

stcox sex i.agegrp year3594
est store A

stcox sex year8594

est store B

lrtest A B
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e The output of the final command is as follows

. lrtest A B
likelihood-ratio test LR chi2(3) = 175.00
(Assumption: B nested in A) Prob > chi2 = 0.0000
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Comparison of Cox regression to Poisson regression for the
analysis of cohort studies

The methods are very similar; the basic formulation of both models is

A(t1X) = Ao(¢) exp(B1X1 + -+ - + BrXk)

In both cases, the 3 parameters are interpreted as log rate ratios.

Both models assume proportional hazards, i.e. constant hazard ratios over
time.

Both models are multiplicative.

That is, if the RR for males/females is 3 and the RR for smokers to
non-smokers is 4, then the RR for male smokers to female non-smokers is 12
(in a model with no interaction terms).
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In Poisson regression, follow-up time is classified into bands and a separate
rate parameter is estimated for each band, thereby allowing for the possibility
that the rate is changing with time.

In Poisson regression, the baseline rate A\g(?) has a constant or piece-wise
constant shape. It is assumed that the rate is constant within each band, so if
the rate is changing rapidly with time we may have to choose very narrow

bands.

In Cox regression, the baseline rate \y(%) is not estimated but allowed to vary
freely.

In Cox regression, we essentially choose bands of infinitesimal width; each
band is so narrow that it includes only a single event.

Unlike in Poisson regression, we do not estimate the baseline rates within
each time band; instead, we estimate the relative rates (rate ratios) for the
different levels of the covariates.
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e As such, if estimating the effect of time is of interest then Poisson regression
Is @ more natural choice, since Poisson regression will estimate parameters for
the time effect.

e Time-by-covariate interactions (i.e., non-proportional hazards) are, in
practice, easier to model in the framework of Poisson regression.

e Multiple time scales are typically also easier to include in the framework of
Poisson regression, since every time scale will be parameterised separately. (In
Cox regression, the main time scale will not be parameterised, while other
time scales will.)
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Comparison Cox and Poisson regression
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Equivalence of Cox and Poisson regression

e The Cox model can be viewed as extending the life-table approach ad
absurdum by:

1. splitting time as finely as possible,

2. modelling one covariate, the time-scale, with one parameter per observed
value of time,

3. profiling these parameters out by maximizing the profile likelihood

e Subsequently recover the effect of the timescale by smoothing an estimate of
the parameters that was profiled out!

e If we split time as finely as possible and fit a Poisson regression model we will
get the same results as the Cox model.

e Code can be found in compare_cox_poisson.do
(at https://biostat3.net/download/?dir=stata).
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Hazard ratios and standard errors for various models

.900357
. 044984
. 7150952
.037117

.920035
.128515
. 255662
.159036
.160755

Variable | Cox Poisson_fine
___________ e
sex | 0.903920 0.903920
| 0.045155 0.045155
year8594 | 0.749376 0.749376
| 0.037027 0.037027
agegrp |
45-59 | 0.918357 0.918357
| 0.128281 0.128281
60-74 | 1.249564 1.249564
| 0.158264 0.158264
75+ | 2.121850 2.121850
| 0.268701 0.268701

.273611

Poisson_fine: split at each failure
Poisson: split in annual intervals

213



Summary so far

We have introduced the Cox model to model survival data.
The Cox model is an alternative to the Poisson regression model.

The Cox model does not assume a shape of the baseline hazard, but allows it
to vary freely.

The Cox model assumes proportional hazards (so does the Poisson regression
model).

We need to assess the appropriateness of the proportional hazards assumption.
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Assessing the appropriateness of the proportional hazards
assumption

The proportional hazards (PH) assumption is a strong assumption and its
appropriateness should always be assessed.

A PH model assumes that the ratio of the hazard functions for any two
patient subgroups (i.e. two groups with different values of the explanatory
variable X') is constant over time.

Note that it is the hazard ratio which is assumed to be constant. The hazard
can vary freely with time.

When comparing an aggressive therapy vs a conservative therapy, for
example, it is not unusual that the patients receiving the aggressive therapy
do worse earlier, but then have a lower hazard (i.e. better survival) than those
receiving the conservative therapy.
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In this situation, the ratio of the hazard functions will not be constant over
time, as is assumed by the PH model.

Figure 2 (slide 29) shows an example of non-proportional hazards, although
this may not be obvious to the untrained eye; it is difficult to assess the PH
assumption by looking at the estimates of the survivor function.

If the hazard functions cross, it is possible that the effect (HR) of treatment
will be close to 1 and not statistically significant in a PH model despite the
presence of a clinically interesting effect.

As such, it is important to plot survival and hazard curves before fitting the
model and to assess the appropriateness of the proportional hazards
assumption after the model has been fitted.

Note that the hazard functions do not have to cross for the PH assumption to
be violated. For example, a hazard ratio of 4 which gradually decreases with
time to a value of 1.5 is an example of non-proportional hazards.
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e Hess (1995) [14] reviews methods for assessing the appropriateness of the
proportional hazards assumption.

e Therneau & Grambsch [19] give a more up-to-date review and include code
for implementing the various methods in SAS and R.
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Methods to assess the PH assumption

e Following is a list of commonly used methods for assessing the
appropriateness of the proportional hazards assumption:

1. Plotting the survivor functions and checking that they do not cross. This
method is not recommended, since the survivor functions do not have to cross
for the hazards to be non-proportional.

2. Plotting the log cumulative hazard functions over time and checking for
parallelism.

3. Plotting Schoenfeld’s residuals against time to identify patterns (for Cox
model only).

4. Including time-by-covariate interaction terms in the model and testing
statistical significance. For example, a statistically significant
time-by-exposure term would indicate a trend in the hazard ratio with time.

e The first two methods do not allow for the effect of other covariates, whereas
the second two methods do. (Not entirely true, for the first two methods, we
can do plots for subgroups of patients with given covariate patterns, though
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this is less straight-forward.)

e |f the PH assumption is violated there are two ways to accommodate

non-proportional hazards: (1) including time-by-covariate interaction terms,
or (2) fit a stratified Cox model (see Day 4).

e Including a time-by-covariate interaction in the model has the advantage that
we obtain an estimate of the hazard ratio as a function of time, i.e. the
hazard ratio will depend on time and differ over time.
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1. Plots of the survivor and hazard functions

e The simplest method to assess proportional hazards is simply to plot the

survivor function or the hazard function by the exposure groups, and check if
the hazards look proportional over time.

e It is often easier to assess PH on the hazard scale.

e In the following graph there is evidence of non-propotional hazard as the
hazard curves cross.

. sts graph, by(year8594)
. sts graph, by(year8594) haz
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2. Plots of the log cumulative hazard function

e The hazard function and the survivor function are related. One relationship of
particular importance is

S(t) = exp —/)\(s)ds (10)

— exp(—A(t)),
where A(?) is called the cumulative hazard (or integrated hazard) at time t.

e If we use a proportional hazards model (e.g. Cox or Poisson), then another
way to write this equation is

S(t‘X) _ {So(t)}eXp(51X1+"°+ﬁka).

e |.e. the baseline survivor function is related to the survivor function via the
linear predictor.
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Consider the situation where we have only a single binary variable, X, then
S(t|X =1) ={5(t[X =0)}",

where r = exp(() is the hazard ratio.

Taking natural logarithms of both sides gives

InS(t|X =1) =rIn{S(t|X =0)}.

Taking natural logarithms of the negatives of both sides gives

In[—In S(t|X = 1)] = Inr + In[— In{S(t|X = 0)}].

Consequently, if the proportional hazards model is appropriate, plots of
In[—1n S(t)] vs t for each group will be parallel, with the constant difference
between them equal to Inr, which is the coefficient (.
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From the equation above, we see that —1In S(¢) is equivalent to the
cumulative hazard function, A(t), and that In|—In S(¢)] = In A(¢).

Consequently, plots of In|—In S(t)] are often called log cumulative hazard
plots. In Stata this can be done by the stphplot command.

Figure 5 was constructed using the following command.
stphplot, by(year8594)

The estimated regression coefficient for calendar period is In(0.755) = —0.28,
so we would expect a constant difference of approximately 0.28 between the
curves.
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—In[-In(Survival Probabilit
1[ ( £ 3y)]

I I I I I
-4 -2 0 2 4
In(analysis time)

—e— year8594 = Diagnosed 75-84 —&— year8594 = Diagnosed 85-9

4

Figure 5: Log cumulative hazard plot by calendar period for the localised colon

carcinoma data
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This appears to be the case, except possibly for higher values of In(%).

The proportional hazards assumption for calendar period appears to be
appropriate.

Note that the lines do not have to be straight, it is only necessary for there to
be a constant difference between the lines.

Plotting In(t) (as opposed to t) on the x axis results in straighter lines and it
is therefore easier to study whether the difference is constant.

Note that Figure 5 is based on estimates made using the Kaplan-Meier
method which, unlike the estimates from the Cox model, are not adjusted for
age and sex.

It is, however, possible to construct adjusted plots in Stata.
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=In[-In(Survival Probability)]

I I I I I
-4 -2 0 2 4
In(analysis time)

—&—— agegrp = 0-44 —~&—— agegrp = 45-59
—&— agegrp = 60-74 —A&— agegrp = 75+

Figure 6: Log cumulative hazard plot by age for the localised colon carcinoma
data, showing some evidence of non-proportional hazards
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3. Tests of the PH assumption based on Schoenfeld
residuals

If the PH assumption holds then the Schoenfeld residuals (a diagnostic
specific to the Cox model) should be independent of time.

In its simplest form, when there are no ties, the Schoenfeld residual for
covariate x,,u = 1, ..., p, and for observation j observed to fail is

ZiERj x’UﬂleXp<Xin)
ZZERJ eXp(XZ/BAX)

Tuj = Tuj —

That is, r,; is the difference between the covariate value for the failed
observation and the weighted average of the covariate values over all those
subjects at risk of failure when subject 5 failed.

A test of the PH assumption can be made by modelling the Schoenfeld
residuals as a function of time and testing the hypothesis of a zero slope.
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Application to localised colon carcinoma

. use colon if stage==1, clear

. stset surv_mm, failure(status==1) scale(12)
. quietly stcox sex 1.agegrp year8594

. estat phtest, detail

Test of proportional-hazards assumption
Time: Time

| rho chi2 df Prob>chi2
____________ e
sex | 0.00840 0.12 1 0.7262
Ob.agegrp | . . 1 :
1.agegrp | 0.01366 0.32 1 0.5695
2.agegrp | 0.04178 3.05 1 0.0809
3.agegrp | -0.00178 0.01 1 0.9410
year8594 | 0.07231 9.29 1 0.0023
____________ e
global test | 27.72 5 0.0000
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e The tests suggest that there is evidence that the hazards are nonproportional
by calendar period (and possibly age).

e Rather than just fitting a straight line to the residuals and testing the
hypothesis of zero slope (as is done by stphtest) we can study a plot of the
residuals along with a smoother to assist us in determining how the mean
residual varies as a function of time.

e The smoother illustrates how the log hazard ratio varies as a function of time.

We see, for example, that the effect of period is stronger during the initial
years of follow-up.
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estat phtest, plot(year8594)

Test of PH Assumption

scaled Schoenfeld — year8594

0 50 100 150 200 250

bandwidth = .8
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estat phtest, plot(sex)

Test of PH Assumption
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232



. use http://www.biostat3.net/download/colon, clear

. drop if stage

. stset surv_mm, failure(status==1)

. stcox sex i.agegrp i.stage year8594

0 /* remove unknown stage */

A model including stage

agegrp

45-59

60-74
75+

stage
Regional

Distant

year8594

1.087061
1.308011
1.835699

2.300746
8.072185

.0232954

.0693794
.0767528
.1089947

.0945407
.2375035

.0206306

.31
.58
.23

0.191
0.000
0.000

[95% Conf.

.911342

.9592411
1.165907
1.634035

2.122715
7.619854

.8206413

Intervall]

1.002693

1.231913
1.467436
2.062252

2.493708
8.551367

.9015415

e Stage is categorised into localised (1), regional (2) and distant (3) tumours.
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. estat phtest, detail
Test of proportional-hazards assumption
Time: Time

| rho chi2 df Prob>chi2
____________ S
sex | -0.00182 0.02 1 0.8773
Ob.agegrp | : 1 :
1.agegrp | ~0.00122 0.01 1 0.9179
2.agegrp | 0.02013 2.92 1 0.0876
3.agegrp | -0.00743 0.40 1 0.5296
1b.stage | : 1 :
2.stage | -0.04083 11.88 1 0.0006
3.stage | -0.15970 168.33 1 0.0000
year8594 | 0.02512 4.58 1 0.0323
____________ o
global test | 210.42 7 0.0000

e There is evidence that the hazards are heavily non-proportional by stage.
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e A plot of the empirical hazards (slide 236) suggests that individuals diagnosed
with distant metastases have proportionally much higher mortality early in the
follow-up but once they have survived several years their mortality is not that
much higher than the other age groups.

e The plots of the fitted hazards (slide 237) show the effect of the assumption
of proportional hazards.

e Exercise: Draw the corresponding hazard ratio across time.
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/* empirical hazards by stage */
sts graph, hazard by(stage)

Smoothed hazard estimates
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/* fitted hazards by stage */
stcurve, hazard atl(stage=2) at2(stage=3)

Cox proportional hazards regression
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/* fitted hazards by stage (on log scale) */
stcurve, hazard atl(stage=2) at2(stage=3) yscale(log)

Cox proportional hazards regression

Regional
N e Distant

.03 .04
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Smoothed hazard function
.01
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analysis time
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/* Can also plot a smooth of the scaled Schoenfeld residuals */
estat phtest, plot(3.stage)

Test of PH Assumption

4
|

2
1

scaled Schoenfeld - 3.stage
0
1

-2
1

0 50 100 150 200 250
Time
bandwidth = .8
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4. Modelling interactions with time to test and model
non-proportional hazards

Non proportional hazards is just a special name for ‘effect modification by
time’, i.e. the hazard ratio depends on and differ across time.

Effect modification is a familiar concept; we can use interaction terms to test
for effect modification and to estimate the effect of exposure in each stratum
of the modifier.

To allow for non-proportional hazards we fit time by covariate interaction
effects.

In Poisson regression, we can easily include time by covariate interaction
terms in the model after time-splitting.

The difficulty with the Cox model is that we do not explicitly estimate the
effect of time so it is not obvious how to fit a time by covariate interaction.
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We can use one of two approaches in Cox:

— Split by time, and include time by covariate interaction (using a special
parameterisation).

— Use the options in Stata for modelling ‘time-varying covariates’ (the tvc ()
option to stcox).

What we are actually interested in is the situation where the effect () of a
covariate varies by time, which is not the same as the value of covariate (X)

varying with time. We'll discuss the distinction in more detail on slide 277.

We do not explicitly estimate the effect of the underlying time scale in a Cox
model, but we can estimate interactions with the underlying time scale.

We still allow the baseline hazard to vary freely, but relax the assumption that
hazards must be proportional over time, i.e. 5 can depend on time, 5(t).

Note that it is possible to estimate the underlying time-scale (baseline
hazard) after fitting a Cox model (type help stcox postestimation).
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Modelling interactions with time, by splitting time (Cox)

e One way to model interactions with the underlying time scale in a Cox model,
is to split time and allow covariates to have different effects over time.

e The Stata stsplit divides risktime into several records, one for each
timeband we specify.

e \We will now model an interaction with time in the colon carcinoma data, to

allow for different hazard ratios for calendar period before and after 2 years
(24 months) of follow-up since diagnosis.
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Colon data: estimating a time by period interaction

We have seen that mortality depends on calendar period of diagnosis (HR
0.75 for recent/early period).

Would we expect mortality in the recent period to be 28% lower at all points
in the follow-up or is it conceivable that the effect is greater (or even
restricted) to the period immediately following diagnosis?

If the effect is different early in the follow-up, compared to later in the
follow-up, then we have a case of non-proportional hazards.

That is, the effect of calendar period is modified by time since diagnosis.

Based on clinical knowledge, we choose to estimate the effect separately for
the first 24 months of follow-up.
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e We start with splitting the data on time, ¢ < 24 months, using stsplit.

. use colon if stage==1, clear

. gen id=_n

. stset surv_mm, failure(status==1) id(id)
. stsplit timeband, at(0,24,1000)

(4611 observations (episodes) created)

e \We can now fit a model containing the interaction between year of diagnosis
(two categories) and time (in two categories).
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. stcox sex i.agegrp 1i.year8594##i.timeband

|
+
|
|
agegrp |
45-59 |
60-74 |
75+ |

|
year8594 |
|

|

|

|

|

|

Diagnosed 85-94
24 .timeband

year8594#timeband
Diagnosed 85-94 #
24

.9494187
1.336923
2.250161

.6566005
54.5918

.0451506

.1314437
.1680924
.2836501

.0428808

.1362721

.37
.31
.43

.44

0.708
0.021
0.000

0.000

[95% Conf. Intervall

.8302006 1.007464

. 7237889 1.245385
1.044923 1.710522
1.757572 2.880806

5777122 . 7462612

1.136012 1.673536
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e Recall how we interpret interaction effects (in general).

— Diagnosed 85-94; effect of period at the reference of timeband (i.e., the first 24 months).

— 24.timeband; effect of time at the reference level of period (the early period).

— Diagnosed 85-94 # 24; additional (multiplicative) effect of period at the second level of
timeband (after 24 months).

e Recall how we estimated interaction models in Day 2. The IRRs can be
tabulated as

Year 0-24 24+
1975-84 1.00 754.59” — meaningless

1985-94 0.6566 0.6566 x 54.59 x 1.3788

e 24 .timeband does not have the usual interpretation because we have already
adjusted for the effect of time since diagnosis (as the underlying timescale).
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e We are effectively trying to adjust for the same confounder in two different
ways in the same model. We should ignore this estimate and focus on the
other two.

e Since time has no meaning in the Cox model, we choose instead to show the
interaction within timebands.

Year 0-24 241+
1975-84 1.00 1.00

1985-94 0.6566 0.6566 x 1.3788 = 0.91

e The estimated hazard ratio for the effect of period of diagnosis is

— 0.72 when assuming proportional hazards
— 0.66 within the first timeband
— 0.91 in the second timeband (0.656 x 1.378 = 0.91)
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We see that there is evidence that the effect of period of diagnosis is more
pronounced early in the follow-up (HR=0.66).

If the interaction effect was zero (HR associated with
Diagnosed 85-94 # 24 equal to one) then there would be no effect
modification (proportional hazards).

We can see that the interaction effect (1.379) is statistically significant
(p=0.001) using the Wald test.

We can reparameterise the model to estimate the effect of period within each
timeband, by creating a dummy variable for exposure within each timeband.
Variable year8594_0 will take value 1 for observations where year8594=1 and
timeband=0, and value 0 otherwise. Variable year8594_24 will take value 1
for observations where year8594=1 and timeband=24, and value 0 otherwise.

. gen year8594_0 = (year8594==1)x*(timeband==0)
. gen year8594_24 = (year8594==1)=*(timeband==24)
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e Then we fit the model again using these indicator variables for the effect of

calendar period over time.

e Note that we could also use the Stata 1incom() command rather than

reparameterising the model.

. stcox sex i.agegrp year8594_0 year8594_24

_t | Haz. Ratio Std. Err.
_____________ +
sex | .9145475  .0451506
|
agegrp |
45-59 | .9494187 .1314437
60-74 | 1.336923 .1680924
75+ | 2.250161 .2836501
|
year8594_0 | .6566005 .0428808
|

year8594_24 .9053366 .0673392

[95% Conf.
.8302006
.7237889
1.044923

1.757572

5777122
. 71825236

Interval]

1.007464

1.245385
1.710522
2.880806

. 7462612
1.047424
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e The estimated hazard ratio, based on the above model, for patients diagnosed
1985-94 compared to 1975-84 is 0.657 for the period up to 2 years of
follow-up and 0.905 for the period after 2 years of follow-up (as we previously
saw).

e To test if this interaction is statistically significant we could perform a LR
test, comparing the model with the interaction to the model without the
Interaction.

. stcox sex i.agegrp year8594

. est store A

. stcox sex i.agegrp year8594_0 year8594_24
. est store B

. 1lrtest A B
Likelihood-ratio test LR chi2(1) = 10.54
(Assumption: A nested in B) Prob > chi2 = 0.0012

e Note that the previous z test statistic from the Wald test (slide 245) was
3.25. If we square this we get a test statistic that is x%. 3.25% = 10.56
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e Both of these tests are testing the hypothesis that the interaction effect is
zero versus it is non-zero. The reason for the small difference in the test
statistic is that one is a likelihood ratio test and one is a Wald test.
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Modelling interactions, by splitting time (Poisson)

e Similarly to Cox regression, we can test for non-PH also in the Poisson model
by including interaction terms for time by exposure interaction.

e In a Poisson model, we already adjust for time (i.e. we have split on time and
included timeband in the model as covariate).

e To include time by exposure interactions, we simply include interaction terms
for exposure and timeband.

. use colon if stage==1, clear

. stset surv_mm, fail(status=1) id(id)

. stsplit timeband, at(0,24,1000)

. streg sex i.agegrp i.year8594##i.timeband, dist(exp)
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_t | Haz. Ratio  Std. Err z P>|z| [95% Conf. Intervall
____________________ o
sex | .8935971 .0441139 -2.28 0.023 .8111866 .9843798
|
agegrp |
45-59 | .9717692 .1345236 -0.21 0.836 . 7408493 1.274666
60-74 | 1.425765 .179201 2.82 0.005 1.114455 1.824036
75+ | 2.569885 .3238718 7.49 0.000 2.00743 3.289933
|
year8594 |
Diagnosed 85-94 | .6514858 .0425449 -6.56 0.000 .5732152 . 7404439
24 .timeband | .2847188 .0190458 -18.78 0.000 .2497333 .3246054
|
year8594#timeband |
Diagnosed 85-94#24 | 2.045482 .197872 7.40 0.000 1.692208 2.472507
|
cons | .0064418 .0009341 -34.79 0.000 .0048482 .0085593

Note: _cons estimates baseline hazard.



e \We can present this in a table:

Year 0-24 241
1975-84 1.00 0.2847

1985-94 0.6514 0.6514 x 0.2847 x 2.0454

e \We can also calculate the hazard ratios associated with period within
timebands:

Year 0-24 241
1975-84 1.00 1.00

1985-94 0.6514 0.6514 x 2.0454 = 1.33
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e Testing for interaction is the same in Poisson as for Cox. The p-value for the
interaction term is significant (p < 0.000).

e The results from the Cox and Poisson models are different. Why?

e One reason for this could be that the Poisson model is not modelling the
underlying time scale well enough. Splitting only into two timebands may not
capture the underlying shape of the hazard.

. use colon if stage==1, clear

. stset surv_mm, fail(status=1) id(id)

. stsplit timeband, at(0,12,24,36,48,60,1000)

. Streg sex i.agegrp i.year8594##i.timeband, dist(exp)

_t | Haz. Ratio Std. Err. Z P>|z]| [95% Conf. Intervall]
____________________ e
sex | .9094825 .0449032 -1.92 0.055 .825598 1.00189

|

agegrp |
45-59 | .9536832 .1320206 -0.34 0.732 . 72706 1.250944
60-74 | 1.3535685 .1701078 2.41 0.016 1.058068 1.731641
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75+ | 2.335439 .2942033 6.73 0.000 1.824482 2.989491
|
year8594 |
Diagnosed 85-94 | .6711657  .0573238 -4.67 0.000 .5677134 .7934696
|
timeband |
12 | .8503601  .0792878 -1.74 0.082 .7083316 1.020867
24 | .5850169 .0636857 -4.92 0.000 .4726128 . 7241548
36 | .4795016  .0581614 -6.06 0.000 . 3780446 .6081869
48 | .3715041  .0516819 -7.12  0.000 .282845 .4879537
60 | .1447364  .0146098 -19.15 0.000 .1187564 .1764001
I
year8594#timeband |
Diagnosed 85-94#12 | .9392502 .124205 -0.47 0.636 . 7248026 1.217147
Diagnosed 85-94#24 | 1.185639 .1801977 1.12 0.263 .8802047 1.59706
Diagnosed 85-94#36 | 1.194534  .2074875 1.02 0.306 .8498595 1.678998
Diagnosed 85-94#48 | 1.411381  .2817559 1.73 0.084 .9543726 2.087233
Diagnosed 85-94#60 |  2.499684 .399695 5.73 0.000 1.827172 3.419722
|
cons | .0071894  .0010808 -32.83 0.000 .0053547 .0096527

e |f we split time finer, then the Poisson model also models the interaction in
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more categories (and is not comparable to the Cox model with two
timebands).
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Summary of Day 3

We have introduced the Cox proportional hazards regression model and
shown how it is very similar to Poisson regression.

The Cox model assumes proportional hazards (as does Poisson regression),
which means that the estimated HRs between groups are constant over time,
although we can relax this assumption by modelling interactions.

The proportional hazards assumption can be tested by fitting time by
covariate interactions, which allows effects to vary over time.

The PH assumption in Cox regression can also be tested using scaled
Schoenfeld residuals.
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e Poisson regression models assume constant hazards or piecewise constant
hazards over time, whereas the Cox model allows the hazard to vary freely
over time.

e Can make Poisson regression more ‘Cox-like’ by making the pieces smaller.

e Hazard ratios from a Cox model are automatically adjusted for confounding
by the underlying time scale. One should choose an appropriate timescale.
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120.

121.

123.

124.

Exercises for Day 3

Localised melanoma: modelling cause-specific mortality using Cox regression.

[This is the key exercise]
Examining the proportional hazards hypothesis (localised melanoma).
Cox model for cause-specific mortality for melanoma (all stages).

Modelling the diet data using Cox regression.
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Appendix 1 Day 3: The Cox proportional hazards model
(in detail)

The most commonly applied model in medical time-to-event studies is the
Cox proportional hazards model [6].

The Cox proportional hazards model does not make any assumption about
the shape of the underlying hazards, but makes the assumption that the
hazards for patient subgroups are proportional over follow-up time.

We are usually more interested in studying how the hazard varies as a
function of explanatory variables (the relative rates, hazard ratios) rather than
the shape of the underlying hazard function (the absolute rate).

In most statistical models in epidemiology (e.g. linear regression, logistic
regression, Poisson regression) the outcome variable (or a transformation of
the outcome variable) is equated to the ‘linear predictor’,

Bo+ 51 X1+ -+ BrXk.
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X1,..., X} are explanatory variables and [, ..., 0 are regression coefficients
(parameters) to be estimated.

The X's can be continuous (age, blood pressure, etc.) or if we have
categorical predictor variables we can create a series of indicator variables (X's
with values 1 or 0) to represent each category.

We are interested in modelling the hazard function, A(¢; X), for an individual
with covariate vector X, where X represents X1, ..., Xg.

The hazard function should be non-negative for all ¢ > 0; thus, using
At X) = Bo+ B X1+ - + B Xk

may be inappropriate since we cannot guarantee that the linear predictor is
always non-negative for all choices of X4,..., X and By, ..., Ok.
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However, exp(Bg + 1 X1 + - - - + B Xk) is always positive so another option
would be

At X) = exp(Bo + S1 X1+ - - + BrXk)
InA(t|X) = Bo+ B X1+ + BrpXy

In this formulation, both the left and right hand side of the equation can
assume any value, positive or negative.

This formulation is identical to the Poisson regression model. That is,

no. events
In(

—) = Bo+ L1 X1+ + BreXk
person-time

The one flaw in this potential model is that A\(¢| X)) is a function of ¢, whereas
the right hand side will have a constant value once the values of the 8s and
X's are known.

This does not cause any mathematical problems, although experience has
shown that a constant hazard rate is unrealistic in most practical situations.
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The remedy is to replace 3y, the ‘intercept’ in the linear predictor, by an
arbitrary function of time — say In A\¢(#); thus, the resulting model equation is

The arbitrary function, A\g(t), is evidently equal to the hazard rate, A\(¢|X),
when the value of X is zero, i.e., when X; =--- = X = 0.

The model is often written as

A(t] X)) = Ao(t) exp(X5).

It is not important that an individual having all values of the explanatory
variables equal to zero be realistic; rather, \y(t) represents a reference point
that depends on time, just as 3y denotes an arbitrary reference point in other
types of regression models.
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This regression model for the hazard rate was first introduced by Cox [6], and
is frequently referred to as the Cox regression model, the Cox proportional
hazards model, or simply the Cox model.

Estimates of 31,..., 0; are obtained using the method of maximum partial
likelihood (slide 342).

As in all other regression models, if a particular regression coefficient, say 3;,
is zero, then the corresponding explanatory variable, X, is not associated
with the hazard rate of the response of interest; in that case, we may wish to
omit X; from any final model for the observed data.

As with logistic regression and Poisson regression, the statistical significance
of explanatory variables is assessed using Wald tests or, preferably, likelihood
ratio tests.

The Wald test is an approximation to the likelihood ratio test. The likelihood
Is approximated by a quadratic function, an approximation which is generally
quite good when the model fits.
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In most situations, the test statistics will be similar.

Differences between these two test statistics (likelihood ratio and Wald)
indicate possible problems with the fit of the model.

The assumption of proportional hazards is a strong assumption, and should
be tested (see slide 215).

Because of the inter-relationship between the hazard function, A(¢), and the
survivor function, S(t), (Equation 6, slide 84) we can show that the PH
regression model is equivalent to specifying that

S(t|X) = {So(t)}exp(61X1+---+6ka) (11)

where S(t| X)) denotes the survivor function for a subject with explanatory
variables X, and Sy(t) is the corresponding survivor function for an individual
with all covariate values equal to zero.
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e Most software packages, will provide estimates of S(¢) based on the fitted
proportional hazards model for any specified values of explanatory variables.

e For example, the Stata stcurve can be used after stcox to plot the
cumulative hazard, survival, and hazard functions at the mean value of the

covariates or at values specified by the at() options.
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The Estimated Regression Coefficients

e [he Cox model can be written as:

A(E1X) = Ao(t) exp(BX)

A(t|X)

Ao(t)
At X
(Ao()

= exp(pX)
)

) =BX

e The estimated coefficients, (3, are log rate ratios. To get the rate ratios we
need to exponentiate the coefficients, exp(f3).

e The confidence intervals for the 3 are on the log scale. The Cls are therefore
not symmetric around the rate ratios.
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Interpreting the Estimated Regression Coefficients

Recall that the basic proportional hazard (PH) regression model specifies

equivalently,
InA(t|X) =InAg(t) + 81 X1 + - + B Xk

Note the similarity to the basic equation for multiple linear regression, i.e.,

Y =080+ 61 X1+ -+ BruXk

In ordinary regression we derive estimates of all the regression coefficients,

l.e.,, B1,..., 0, and [.

In Cox regression, the baseline hazard component, \y(t), vanishes from the
partial likelihood; we only obtain estimates of the regression coefficients
associated with the explanatory variates X, ..., Xg.
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e Consider the simplest possible setup, one involving only a single binary
variable, X; then the PH regression model is

In A(t|X) =InXo(t) + BX

or equivalently,

BX = In A(t|X) — In Ao(t)

i)

e Since \y(t) corresponds to the value X =0,

8 =1n {A(t‘;;(; 1)} (13)
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That is, 3 is the logarithm of the ratio of the hazard rate for subjects
belonging to the group denoted by X =1 to the hazard function for subjects
belonging to the group indicated by X = 0.

The parameter 3 is a log relative rate (log hazard ratio) and exp(3) is a
relative rate (hazard ratio) of response. PH regression is sometimes called
“relative risk regression’ .

5 is the same for all values of time, i.e. the hazard ratio is constant over ¢
(proportional hazards over time).

If we conclude that the data provide reasonable evidence to contradict the
hypothesis that X is unrelated to response, exp(/3) is a point estimate of the
rate at which response occurs in the group denoted by X =1 relative to the

rate at which response occurs at the same time in the group denoted by
X =0.

A confidence interval for 3, is given by 3 + 1.96SE.
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Corresponding confidence intervals for the relative rate associated with the
same covariate are obtained by transforming the confidence interval for 3, i.e.,

(6@7 BU) = <66£7 eﬁu) .

A

When more than one covariate is involved, the principle is the same; exp(;)
is the estimated relative rate of failure for subjects that differ only with
respect to the covariate X.

If X is binary, exp(8;) estimates the increased/reduced rate of response for
subjects corresponding to X; = 1 versus those denoted by X; = 0.

When X is a numerical (continuous) measurement then exp(Bj) represents
the estimated change in relative rate associated with a unit change in X ;.

Since the estimates Bl, e ,Bk are obtained simultaneously, these estimated
relative rates adjust for the effect of all the remaining covariates included in
the fitted model.
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A look at interaction models (for completeness)

Consider again a proportional hazards model with one single binary variable,
X1, which takes the value 1 if an exposure is present and O if it is absent

A(t] X)) = Ao(¢) exp(S1.X1).

The hazard ratio for exposed to unexposed is given by exp(51).

We now construct a second variable, Xo = X3t and include this in the model,
in addition to X;. The variable X5 takes the value t if the exposure is present
and O if it is absent

)\(t‘X) = )\O(t) exp(ﬁle + 52X1t>.

Based on this model, the hazard ratio for exposed to unexposed is given by
exp(ﬁl + Bgt).
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An estimate for 35 significantly different from 0 indicates that the hazard
ratio is non-constant over time. §5 > 0 indicates that the hazard ratio
increases with time and 5 < 0 indicates it decreases with time.

This is not a general test of the proportional hazards assumption. |t tests
against the alternative that the hazard ratio changes monotonically with time.

Another alternative might be that the hazard ratio is constant for an initial
time period, say t = 2 years, but takes on a different (constant) value for the
remainder of follow-up [13].

To test against this alternative, we construct a variable X5 which takes the
value 1 if the exposure is present and t > 2 years, and 0 otherwise.

In the resulting model containing the variables X; and X5, the hazard ratio
for exposed to unexposed for the period t < 1 year is given by exp(/31) and
for ¢t > 2 years it is given by exp(S1 + 52).
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e An estimate for (5 significantly different from 0 indicates that the hazard
ratio is different between the two time periods.
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Topics for Day 4

Limited coverage of a range of topics:

Modelling time-varying covariates and tvc option in Stata
Parametric models

Flexible parametric survival models.

Standardised /Marginal survival.

More on censoring and truncation, including informative censoring.
Competing risks analysis.

Biases in survival analysis/cohort studies (not a comprehensive list).
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Time-varying covariates and effects

We have been considering the situation where the effect 5 of a covariate
varies with time.

It is possible that the underlying values of covariates X can change during
follow-up. For example, blood pressure, occupational exposure to carcinogens,
parity, CD4 count, or cumulative exposure to cigarettes.

Another application is in observational studies where an intervention may
occur at any point in the follow-up. At the time of the intervention, the
explanatory variable associated with the intervention changes value from 0
(false) to 1 (true).

We highly recommend the time-splitting approach for modelling such data.

That is, we split to obtain a separate observation at every value of the
time-varying covariate.
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| id stime expotime failure |
| = mm oo - |
1. | 1 4.139845 1.642756 0 |
2. | 2 3.401971  3.144381 1
it +
e e et et +
| id stime expotime  failure st _to _t d exposure |
| = m o - |
1. 1 1 1.642756 1.642756 1 0 1.6427561 0 0 |
2. | 1 4.139845 1.642756 0 1 1.6427561  4.1398454 0 1]
3. | 2 3.144381  3.144381 . 1 0 3.1443808 0 0 |
4. | 2 3.401971  3.144381 1 1 3.1443808 3.4019713 1 11
e ettt e e L L L L e bt e +

e Exercise 125 examines a possible effect of marital bereavement (loss of
husband or wife) on all-cause mortality in the elderly (see Clayton & Hills,

§32.2).

but may become bereaved at some point during follow—up.

e Bereavement is a time-varying exposure — all subjects enter as not bereaved
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A distinction is made between internal variables (which relate to an individual
and can only be measured while a patient is alive) and external variables
(which do not necessarily require survival of the patient for their existence).

Care should be taken when modelling time-dependent covariates, particularly
with internal variables [11, 21].

A fix exposure can have a constant effect (main effect) or a time-varying
effect (interaction). E.g. sex is a fix exposure, but the effect of being
woman/man may be different at young and old age.

A time-varying exposure typically also have a time-varying effect (but in rare
cases it can have a constant effect). E.g. smoking is often a time-varying
exposure. Usually the risk of a disease depends on the amount of smoking
and how it varies over age (time-varying effect), but sometimes having ever
smoked (regardless of when and how much) may permanently increase the
risk of disease (constant effect).
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The tvc (time-varying covariates) option in stcox

e The tvc() and texp() options to stcox are used for time-varying exposures
but can also be used for estimating time-varying effects of covariates. It does
not require time splitting.

e The option will automatically create the dummy variables that we previously
coded ourselves after time splitting.

e Let's again fit the model where we allow the effect of period to differ in the
first 2 years of follow-up.
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. stcox sex i.agegrp year8594, tvc(year8594) texp(_t >= 24)

_t | Haz. Ratio Std. Err. z P>|z]| [95% Conf. Intervall
_____________ o
main |

sex | .9145475 .0451506 -1.81 0.070 .8302006 1.007464
|
agegrp |
45-59 | .9494187 .1314437 -0.37 0.708 . 7237889 1.245385
60-74 | 1.336923 . 1680924 2.31 0.021 1.044923 1.710522
75+ | 2.250161 .2836501 6.43 0.000 1.757572 2.880806
|
year8594 | .6566005 .0428808 -6.44  0.000 5777122 . 7462612
_____________ e
tve |
year8594 | 1.378824 .1362721 3.25 0.001 1.136012 1.673536

Note: variables in tvc equation interacted with _t>=24

e tvc year8594 (1.3788) is the interaction term.
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The cutoff at 24 months was chosen arbitrarily. For the first 6 months of
follow-up the estimated hazard ratio was 0.724, for the first year it was 0.676,
and for the first two years it was 0.657.

Choosing the cutpoint after inspection of the data will invalidate statistical
inference (i.e. reported P-values will be too low).

We have examined only one possible alternative to proportional hazards (a
step function with a single step at 24 months).

In practice, it is possible to fit any model of the form

)\(t|X) — )\0(75) exp(ﬁle -+ /BQle(t)),

where f(t) is a function of time.
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Parametric models

Since the baseline hazard is not estimated in the Cox model, it is said to be
semi-parametric. The hazard ratios are modelled parametrically.

Even though it is possible to retrieve estimates of the baseline hazard function
from the Cox model (not covered in this course), this can more easily be done
by fitting a parametric model which parametrically models the baseline.

If we assume that survival times follow an exponential distribution, then the
hazard is constant (overall or piece-wise) and we could model the hazard as a
function of one or more covariates using Poisson regression.

We could then obtain an estimate of the hazard ratio for the treatment group
compared to the control group while adjusting for other explanatory variables.

The disadvantage of this method is that assuming an exponential distribution
for survival times implies the assumption of a constant hazard function over
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time (or within time bands if the data has been splitted), which may not be
appropriate.

The Weibull distribution, which has two parameters, is a more flexible
distribution in which the hazard can be either monotonic increasing,
decreasing, or constant.

The Weibull, log-normal and Gompertz distributions have proved to be
applicable in several types of medical survival studies.

If a parametric distribution is appropriate, such models will result in more
efficient estimates (narrower confidence limits) of the parameters of interest
compared to other models which do not assume a distribution for the survival
times.

Most common statistical procedures are parametric, for example, t-tests,
ANOVA, and linear regression all assume normal distributions.
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Inference based on the above procedures is, however, quite robust to
violations of the distributional assumptions. For example, application of a
standard t-test will generally lead to the correct conclusion even if the two
samples are not drawn from populations with normal distributions.

This is not necessarily the case when assuming a parametric distribution for
survival time. The assumption of an inappropriate distribution can result in
erroneous conclusions.

That is, when using parametric survival models, special attention must be
paid to testing the appropriateness of the model.

Still, of all parametric models, Poisson regression is very robust since it allows
the hazard to vary freely between timebands.
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Flexible parametric survival models

In Cox regression the baseline hazard is not estimated.

Many parametric models make strong assumptions about the baseline which
might not be plausible in many settings.

In poisson regression the baseline hazard is estimated as a step function,
which is not biologically plausible.

By fine splitting, the steps can be made small and the baseline hazard
approximately continuous.

Splines can be used to get a continuous function for the baseline, instead of
fitting one parameter for each of the many timebands.

However, the data can become very large when splitting finely.

286



e Flexible parametric models are an alternative, also using splines, but without
requiring time splitting.

e Splines are a way of modeling continuous variables in a flexible way.
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Continuous First Derivatives & Second Derivat
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Parameter estimates are still interpreted as hazard ratios (if a PH model).

Non-proportional hazards models (time-dependent effects) can easily be
modeled by including interactions between covariates and splines for time.

Since the baseline hazard is estimated as a continuous function in the flexible
parametric survival model it is easy to present results using graphs, and to
present results on the hazard scale, as hazard ratios, or the survival scale.

This is illustrated in the following graphs.

A flexible parametric survival model fitted to data on breast cancer patients in
England, with breast cancer death as the outcome.

The variable of interest is deprivation status, and results are shown for the
lowest and highest group.
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Thinner lines are predictions from proportional hazards model
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hazard ratio
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Difference in Survival Curves

Least deprived
=== == \|ost deprived

2 3 4 5

Time from Diagnosis (years)
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Difference in Survival Curves
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2 3
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Summary, flexible parametric model

Hazard ratios are very similar to hazard ratios from a Cox model and Poisson
model.

Since the baseline hazard is modelled it is easy to include non-PH, interaction.

The time-scale is included as a continuous variable, more plausible than step
function.

Easy to present results using graphs.
The parametric approach enables predictions and extrapolations.

More information on flexible parametric models is available under the
appendix of day 4.
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What to report after fitting a survival model?

We saw that survival probabilities under different exposure groups are
frequently compared using the Kaplan-Meier estimator.

To adjust for confounding, we often fit survival models e.g Poisson, Cox,
flexible parametric models.

After fitting a survival model the analysis is often summarised using the
hazard ratio (HR).

Many authors have previously argued about limitations related to the use of
HRs.
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Hazard ratios

e The interpretation of HRs remains challenging as HRs are often
misinterpreted as relative risks.

— The relative risk is the ratio of the probability of experiencing the event by a
specific time for the exposed to the probability for the unexposed.

— The relative risk is always a function of time.

— HRs should be interpreted as relative rates and not relative risks!

e Studies often report a single HR estimate for the whole study follow-up (i.e.
assuming proportional hazards).

— Often an unrealistic assumption and the HR will vary over time.

e HRs are estimated based on those who have survived up to a particular time.

— As time increases, the characteristics of individuals who are still in follow-up in
each exposure group might differ, resulting in an imbalanced comparison
between exposures.

— This is often referred to as built-in selection bias of HRs.

297



e A more informative way to summarise the exposure effect is to use

Other measures

standardised survival probabilities.

e Let's look an example of relapse-free survival (measured as time from primary

surgery to relapse or death, whichever occurred first) of breast cancer [18].

Survival probability

1.00

0.751

0.50

0.251

0.00

hormonal therapy
——— no hormonal therapy

0 2 4 6
Years from surgery

10
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Standardised survival curves

e Interpretation: the average survival probabilities if everyone in the study
population had received hormonal treatment or if everyone in the study
population had not received treatment.

e The distribution of all other adjusting covariates are the same in the two
standardised probabilities, fairer comparisons between exposed and unexposed

can be made.

e Differences in the two survival curves are not due to differences in e.g.
differences in tumour size.

299



Example - Difference in standardised survival curves

0.14-
0.12-
0.10-
ooe T
0.06-

0.04

Difference in survival probabilities

0.02

0.00 -~

0 2 4 6 8 10
Years from surgery

This can now be interpreted as risk (e.g., difference in risk of experiencing the
event by a specific time under treatment in comparison to no treatment).
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e More on standardised survival curves are available under the appendix of day
4.

e You can also read the relevant paper that includes example code [18].
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Censoring and truncation

With right censoring, the most common form of censoring in medical studies,
we know that the event has not occurred during follow-up, but we are unable
to follow-up the patient further. We know only that the true survival time of
the patient is greater than a given value.

Less common is left-censoring, where we know the event has occurred prior to
the time of observation but we don’t know exactly when.

Interval censoring occurs when we know that the event has occurred between
two time points but don’t know the exact date (e.g. HIV infection between
two test dates, or cancer between two screens).

Standard methods for survival analysis assume that all censored data are right
censored and we have only used right censored data in the course.

Special methods are required for analysing left censored and interval censored
data, which is covered in this course.

302



Censoring, in general, refers to the situation where we can identify the
individuals in our study but we do not have precise information on the event
time for all individuals (we know only that it is in some interval).

A second feature of survival studies, often confused with censoring, is
truncation.

Truncation refers to the situation where certain subjects are not observed
such that the investigator is not aware of their existence.

Left truncated data occurs when we only observe the individual if they are
event free after a certain follow-up time. For example, late entry to the study
or using age as the primary time scale.

Left truncated data is common. As long as the time-scale is adressed
properly, so all subjects are not assumed to be followed from time 0, left
truncated data can be analysed with Cox and poisson regression.
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e Right truncated data occurs when only individuals who experience the event
of interest are included in the study.

e Special methods of analysis are required for analysing right truncated data,

such as use of a conditional likelihood or a method which uses a selective risk
set (see Klein & Moeschberger (1997) [16]).
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Estimating AIDS incubation time: An example of right
truncated data

Knowledge of the time between HIV infection and development of AIDS
(called the incubation period) is important in AIDS research.

The first reliable estimates of incubation time were obtained in the early
1980’'s by studying individuals who developed AIDS from blood transfusions
(before prospective donors were screened for HIV).

Only individuals who experienced the event could be studied. That is, the
data were right truncated.

Not all blood recipients were exposed to HIV, and not everyone who was
exposed had developed AIDS at the time of the analysis.

Nevertheless, by studying those individuals who developed AIDS as a result of
HIV exposure at transfusion, using appropriate statistical methods, it was

possible to estimate incubation time.
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Informative vs non-informative right-censoring

To make it possible for statistical analysis we make the crucial assumption
that, conditional on the values of any explanatory variables, censoring is
unrelated to the event of interest.

The statistical methods used for survival analysis assume that the time to
event for an individual censored at time ¢ will be no different from those
individuals who were alive at time ¢ and were under follow-up past time ¢.

One way to think of this is that, conditional on the values of any explanatory
variables, the individuals censored at time ¢ should be a random sample of the
individuals at risk at time ¢.

This is known as noninformative censoring. Under this assumption, there is
no need to distinguish between the different reasons for right-censoring.
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When withdrawal from follow-up is associated with the time to event, this is
known as informative censoring and standard methods of analysis will (in
most cases) result in biased estimates.

Common methods for controlling for informative censoring are to stratify or
condition on those explanatory factors on which censoring depends.

Censoring due to termination of the study, or accidental death, are usually
uninformative, but careful consideration must be given to other forms of
censoring.

Determining whether or not censoring is informative is not a statistical issue
— it must be made based on subject matter knowledge.

Censoring due to a competing event (described in a few slides) can sometimes
be allowed to be informative.
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Example of informative censoring

Throughout the course we have estimated cause-specific survival and
cause-specific rates by censoring the survival time for individuals that die due
to other causes.

This is likely to be informative censoring, since individuals that are older are
more likely to die due to other causes as well as the event of interest.

One way to (partly) handle this is to always estimate cause-specific survival
(and rates) by age groups, and other factors that is likely to influence both
censoring and the event of interest.

The magnitude of the bias depends on the amount of censoring and the
strength of the association between the censoring mechanism and the event

of interest.

Extra exercise: Go through all Kaplan-Meier graphs created in the exercises
and consider if there is informative censoring.
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Example of informative censoring — colon cancer in IBD
patients

In a historical cohort study, 19,500 individuals with inflammatory bowel
disease (IBD) were identified in the Swedish hospital inpatient separations
register and IBD registers maintained in Uppsala and Stockholm.

We were interested in risk factors for cancer of the colon: the cohort was
followed up using the Swedish cancer register.

Some patients had their colon surgically removed (colectomy) without being
diagnosed with colon cancer, so were not at risk for colon cancer.

These were the patients with the most extensive type of IBD, and it is known
that risk of colon cancer is proportional to the extent of the IBD.

Therefore, censoring due to colectomy is informative.
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Competing risks

Competing risks are outcomes that prevent a person from experiencing
another outcome, for example dying from CVD precludes someone of dying
from cancer.

But it doesn't have to be death, for example being discharged from hospital
when event of interest is infection during hospital stay.

When estimating cause-specific survival, survival times from individuals who
experience a competing event are usually censored.

Since censoring assumes that people are still at risk of experiencing the event
(but we will not be able to observe when), censoring when people die of
another cause will assume that they could still die from the cause of interest.
This is in practice impossible.

Problem therefore arise when looking at and interpreting the survival function
(or 1 —S(1)).
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Competing risks, an example

e +
| week n infection discharge |
|- |

1. | 0-1 306 11 15 |

2. | 1-2 280 12 19 |

3. | 2-3 249 16 16 |

4. | 3-4 217 21 16 |

5. | 4-5 180 19 19 |

6. | 5-6 142 21 22 |

7. | 6-7 99 12 14 |

8. | >7 73 0 73 |

e +

e What proportion of patients have an infection within the first 5 weeks of
hospitalisation? How is this estimated? Censor when discharged?

e Depends on in what context you want to interpret the estimate.
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e Without censoring (11+12+16+21+419)/306=0.26
e Life table estimate (censoring for discharge) gives 0.31

e Which estimate would you use if you had to make a budget for hospital costs
due to infection? To compare to another hospital to draw conclusions about
differences in care?
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Competing risks, another example

1 Other causes crude cumulative probability of
Prosta i ulative i death
" death E:q::?:e :.:;:;1 i ba = F:l:mtﬁ cancer crude cumulative probability
of death
1.00 1.00
0.80 0.80
0.60 0.60
0.40 0.40
0.20 0.20 -
0.00 - 0.00

O 2 4 6 8 10 12 14

0 2 4 6 8 10 12 14

Figure 7: From Cronin and Feuer (2000) [7]
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Competing risks

When there are competing events (risks), we can still estimate and interpret
the hazard (and HR), since the hazard is, for each time point, based on those

still alive.

If there are competing risks the hazard rate and HR has to be interpreted as

the hazard rate and HR when the competing risks exists.

If the two competing risks are independent, within variables adjusted for,
(non-informative censoring) the survival function can still be interpreted as
‘net survival'. This can be thought of as the survival in the absence of
competing events.

Net survival is the proportion of people who would survive up to a certain
point in time in the hypothetical scenario where the event of interest is the
only possible event (if we could eliminate competing events).
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Can be the measure you are interested in when for example studying temporal
trends in cancer patient survival or making comparisons between groups.

For some research questions it is instead the ‘crude survival’ which is of
interest. This can be thought of as the survival, in the presence of competing
events.

There is a lot of literature on comepting risks, unfortunately most is difficult
to read, and sometimes even misleading.

Special methods are available to estimate measures in the presence of
competing risks, but is not covered in this course.
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Biases in survival analysis, conditioning on the future

It is commonly seen in observational studies that exposure is not known at
start of follow-up, e.g.

In these cases be careful how you define (the time-varying) exposure to not
condition on the future.

Those with longer follow-up have a higher chance if being registered as
exposed, which could introduce a bias.

Even when you know that some subjects must have been exposed during the
whole period, the reason you know it is because you have information from
further follow-up.

NEVER condition on the future.
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Biases in survival analysis, when comparing treatments

A common question is whether a combination treatment (e.g. surgery followed
by radiation therapy) is preferable to the single treatment (e.g. surgery alone).

Survival time is usually measured from date of diagnosis, date of first hospital
admission, or date of first treatment.

In order to receive the combination treatment, one must survive a sufficient
period after surgery in order to receive the radiation therapy.

Those who die during, or immediately after, surgery are included in the
‘surgery only’ group.

A naive analysis would show that the group receiving combination therapy
experience superior survival.
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Biases in survival analysis, lead time bias

The survival time is measured from the start and end of follow-up.

As such, any factor which affects either the start date, or the end date will
also affect the survival estimation.

It is possible, for example, to increase patient survival time by bringing
forward the date of diagnosis without altering the date of death.

The implementation of a mass-screening program leads to cancers being
detected earlier than they would have been without screening.

This difference in the time of diagnosis is called the lead time (Figure 8) and
can bias the comparison of survival between patient groups, the so-called lead
time bias [8].

The implementation of a mass-screening program is not the only way to
introduce lead time bias.
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e Increased contact with the health care system for any reason may lead to
early clinical diagnosis of a disease, so comparisons of groups that have
different health care seeking behaviour could suffer from lead time bias.

Onset Detectability Symptoms Death
DETECTABLE
*--eeeee- PRECLINICAL [---=-===-1------~ >
I
1 I SURVIVAL I
___________ LEAD| . ...
~ TIME "1 _TIME >
RN SURVIVAL| ... -
TIME
Early Clinical Postponed
diagnosis diagnosis death

Figure 8: Natural history of chronic illnesses.
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Guidelines for performing and publishing survival studies

When conducting a cohort study, it is important to consider which
information to report.

Several reporting guidelines for observational cohort studies.

STROBE guidelines (https://www.strobe-statement.org/) are very general,
not much details. E.g. STROBE guidelines for Cohort studies.

STRATOS iniative (https://stratos-initiative.org/) have published guidelines
for key items to consider when performing survival analysis, these are
somewhat technical. [See: Andersen et al, Statistics in Medicine.
2021;40:185 - 211: Analysis of time-to-event for observational
studies:Guidance to the use of intensity models.]
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Guidelines Altman et al, 1995

Review of survival analyses published in cancer journals. DG Altman, BL
Stavola, SB Love and KA Stepniewska. British Journal of Cancer, 1995

Review of 132 papers analysing survival data

The papers were published in British Journal of Cancer, European Journal of
Cancer, Journal of Clinical Oncology, American Journal of Clinical Oncology
and Cancer between October and December 1991

The review was not restricted to observational epidemiology; keep in mind
that praxis differs between disciplines

After reviewing the papers the authors suggest guidelines for presentation of
survival analyses

321



Review of survival analysis in cancer journals
DG Altman et af

518

Appendix:

Suggested guidelines for presentation of survival analyses

Presentation of data

e Describe the recruitment and analysis dates.

e Describe the reason for the sample size.

e Report a summary of follow-up, such as the median and
quartiles computed by the reverse Kaplan—Meier method.

e Report how many subjects were lost to follow-up and
whether, and how, they had been included in the analyses.

e Report the number of events for each end point.

Presentation of methods

e Give a clear definition of each end point being considered,
i.e. define the time origin, the event of interest and the
circumstances where survival times are censored.

e Name the method used for estimating survival pro-
babilities.

e Name any test used in the analyses; in particular, justify
the use of weighted logrank tests.

o Report the test for trend when ordered categorical
variables are examined.

o When performing univariate or multivariate analyses,
report all the covariates examined, their frequency of miss-
ing values and the definition of the categories used (if any)
whether the covariate is significant or not.

e When Cox regression analyses are performed, describe the
criteria used to select the variables in the initial model, the
procedure to specify the final model and describe any
methods used to assess the model assumptions.

o Name the software used.

Presentation of results

e Give a summary of overall survival: preferably median
and/or percent surviving n years.

e If study is a randomised clinical trial, give separate sum-
maries of survival for each treatment group.

e When reporting the results of any test, give the test statis-
tic, the degrees of freedom (when applicable) and the exact
P-value.

e When presenting results of a logrank test also report the
numbers of observed and expected events in each group
(desirable).

e When comparing survival in two or more groups, give an
estimate of the survival in each group, e.g. median sur-
vival time, survival probabilities for a particular time
point, hazard ratio.

e When presenting the results of a Cox regression analysis,
report the estimated coefficients (or estimated hazard
ratios), measures of their precision (i.e. standard errors or
confidence intervals) and/or the associated P-values.

e Do not use crude rates to summarise the data.

Graphs

e Use meaningful time intervals.

e Use a step function to join Kaplan—-Meier survival
estimates.

e Mark the survi\ia] time of censored observations (desir-
able).

e If several curves are reported in the same plot use different
lines type (desirable).

e Give number of patients at risk at selected time points
(desirable).

e Mark confidence intervals or standard errors for some of
the selected time points (desirable).

Abstract

e Include in the abstract summaries of follow-up and survival
(separately by treatment group if applicable) and the final
results of both univariate and multivariate analyses (when
applicable).
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Our suggested guidelines

Methods section should include:

— Definition of outcomes, start/end of follow-up, dates

— Censoring events, truncation issues

— Time scale(s), origin

— Competing risks, if so how were they handled

— Measures, e.g. survival proportions, hazard rates, hazard ratios

— Methods for estimation - non-parametric, modelling (e.g. Kaplan-Meier; Cox),
including which time scales were adjusted for

— Time-varying exposures and time-dependent effects (non-proportional hazards)

— Tests for associations, e.g. log-rank, Wilcoxon, Wald tests, LR tests

— Assumptions and tests for assumptions, e.g. proportional hazards

— Potential biases and how they were handled

— Sensitivity analyses to assess violations of assumptions

— General: categorisations, cutoffs, units, covariates/adjustments included in
models.
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Results section should include:

— Descriptive statistics, e.g. numbers of persons, events, person-years, loss to
follow-up, min/max follow-up - overall and by exposure groups

— Survival proportions, rates, number atrisk over time - consider using graphs

— Hazard ratios, tests of associations and interactions

— Tests/evaluations of proportional hazards assumption

— Other measures, figures, etc.
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Summary of Day 4

Time-varying covariates can be included in survival models using
time-splitting or similar.

Flexible parametric models are an alternative to Poisson and Cox regression
when interest lies in estimating the baseline and additional survival measures.

Standardised /Marginal survival is an alternative to reporting of hazard ratios.

Right-censored, and left truncated data can be analysed with the tools given
in this course, but other methods are needed for left- or interval censoring and
right truncated data.

The main methods described in this course are assuming non-informative
censoring.

Competing risks methods were only covered briefly.
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e Bias in survival analysis can arise e.g. if you condition on the future, if
treatment allocation depends on time, or if there is earlier diagnosis for

selected groups.

e Guidelines can help deciding which information to report from a survival
analysis.
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Key concepts of the course

Special methods (i.e., survival analysis) are required when the outcome of
interest has a time dimension.

Epidemiological cohort studies can (and should) be analysed in the framework
of survival analysis.

Survival data often include observations with censored survival times, most
commonly right-censoring.

“Time’ may be a confounder, a mediator or an effect modifier.

The outcome can be presented as a survival proportion or an event rate. The
two measures are mathematically related.

When comparing groups, HRs are often presented and estimated within a
modelling framework.
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Cox regression and Poisson regression are very similar.
The methods presented assume non-informative censoring.

Most methods assume proportional hazards, but this assumption can often be
relaxed.
Reinforcing key concepts in statistical modelling of epidemiological data

— Studying confounding and effect modification in a modelling framework
— Reparameterising a statistical model to estimate interaction effects®

%In this course, we tend to use “effect modification” and “interaction” synonymously.
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Some additional topics, not covered in the course

Survival analysis is a broad field, and there are lots of aspects not covered in
this course. Below are examples of more advanced topics of survival analysis.

Stratified Cox model

Methods for incorporating competing risks

Multi-state models

Recurrent events

Interval-censored data, left-censored data, (right truncated data)
Additive hazards models

Accelerated failure time models
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Non-collapsibility of hazard ratios
Frailty models

Prediction models

SIR/SMR
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125.

131.

132.

140.

Exercises for Day 4

Estimating the effect of a time-varying exposure — the bereavement data
Model cause-specific survival using flexible parametric models
Flexible parametric models with time-dependent effects

Probability of death in a competing risks framework
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Appendix 1 Day 4: An introduction to likelihood inference
and the Cox likelihood

The aim of statistical inference is to estimate population parameters of
interest from observed data. For example,

Estimate the hazard ratio for exposed/unexposed in a study of cancer patient
survival. The parameter of interest is the log hazard ratio 3 in the population
from which the sample is drawn. This parameter is estimated using the
sample of patients observed.

Similar with logistic regression (the parameter of interest is the log odds ratio

B).

Estimate the recombination fraction, 6, in parametric linkage analysis from
the observed pedigrees (marker genotypes and phenotypes).

A simple example: Imagine we are interested in estimating the proportion, p,
that a toss of a coin will result in heads.
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We toss the coin 10 times and observe 4 heads.

We wish to estimate the parameter of interest, p, from the observed data (the
10 tosses of the coin). Issues of interest are

— What is the most likely value for p?
— What is a range of likely values for p?
— Is p = 0.5 a plausible value?

The likelihood approach is to calculate the probability of observing the
observed data, given the probability model, for all possible values of the
parameter(s) of interest and choosing the values of the parameter(s) that
make the data most likely.

That is, for what value of p is the probability of tossing 4/10 heads most
likely?

We will calculate the probability of observing 4 heads in 10 tosses for a range
of possible values of p.
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If the true value is p = 0, what is the probability of observing 4 heads in 10
tosses?

That one was easy (the probability is zero), but what if p = 0.17

If p = 0.1 then the number of observed heads can theoretically be any integer
between 0 and 10 and the probability of each is described by the binomial
distribution.

Recall that if X is a random variable described by a binomial distribution with
parameters n and p then the probability distribution of X is given by

n! T n—r
Pr(X:r):T!(n_T)!p (1—p)"™ ", forr=0,1,2,3,...n.

Pr(X = r) is the probability of obtaining r ‘successes’ (e.g., toss heads) in a
sample of size n where the true proportion is p.
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e For p = 0.1 and n = 10 the probability of observing each of the possible
outcomes is as follows.

Prob(r heads)
0.35
0.39
0.19
0.06
0.01
0.00
0.00
0.00
0.00
0.00
0.00
1.00

Mg‘ooo\l@m-hwr\m—noﬁ
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Binomial distribution with n = 10 for various values of p

Assumed value of p

0.00 0.10 020 030 0.40 050 0.60 0.70 0.80 0.90 1.00

1.00 035 0.11 0.03 0.01 o0.00 0.00 0.00 0.00 0.00 0.00
0.00 039 0.27 012 0.04 001 0.00 0.00 0.00 0.00 0.00
0.00 0.19 030 0.23 0.12 004 0.01 0.00 0.00 0.00 0.00
0.00 0.06 020 0.27r 021 0.12 0.04 0.01 0.00 0.00 0.00
0.00 001 0.09 020 025 021 0.11 0.04 0.01 0.00 0.00
0.00 0.00 0.03 0.10 020 0.25 0.20 0.10 0.03 0.00 0.00
0.00 0.00 0.01 004 0.11 021 025 0.20 0.09 0.01 0.00
0.00 0.00 0.00 0.01 0.04 0.12 0.21 0.27 0.20 0.06 0.00
0.00 0.00 0.00 0.00 0.01 004 0.12 023 030 0.19 0.00
0.00 0.00 0.00 0.00 0.00 001 0.04 012 0.27 0.39 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 011 0.35 1.00

MES©®w~NOO s~ WN R O

1.00 100 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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‘Likelihood’ for a range of values of p

p  Prob(r =4)

0.00 0.00
0.10 0.01
0.20 0.09
0.30 0.20
0.40 0.25
0.50 0.21
0.60 0.11
0.70 0.04
0.80 0.01
0.90 0.00
1.00 0.00

e This is the likelihood function’. The value of p for which the likelihood is
greatest is p = 0.4. This is called the maximum likelihood estimate.

10!

10—1)! from the likelihood function.

"In practice, we would exclude the constant
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Likelihood
A .15
|

]

.05

Plot of the binomial likelihood
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What are other likely values for p

e We can see that p = 0.5 is also quite likely. The probability of the data is 0.21
when p = 0.5 compared to a probability of 0.25 when p = 0.4 (the MLE).

e We can test whether p = 0.5 is a likely value by studying the ratio of the
likelihoods.

L(0.5)/L(0.4) = 0.21/0.25 = 0.8176

e A result in mathematical statistics tells us that, if the true value of p was 0.5,
then minus twice the log likelihood ratio will have a chi square distribution
with 1 degree of freedom.

—21n[L(0.5)/L(0.4)] = —2[1(0.5) — 1(0.4)] = 0.40279

where [ is the log likelihood (the natural logarithm of the likelihood).
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. di chi2tail(1,0.403)
.52554398

e We see that, if the true value of p was 0.5, then we would observe a test
statistic at least as large as that we observed 53% of the time. That is, we
cannot reject the hypothesis that the true value of p is 0.5.
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Mathematically

We wish to find the value of p that maximises the likelihood function

n! T n—r -
L(p)_r!(n—r)!p (I—p)* ", forr=0,1,2,3,...n.

It is generally easier to maximise the log likelihood (the maximum will occur

at the same value). Ignoring the constant,

l(p) = In[L(p)] = rIn(p) + (n —7)In(1 — p).

The derivative of I(p) wrt pis I'(p) =r/p— (n—1r)/(1 — p).

The maximum value of [(p) will occur when I'(p) = 0 which p = r/n.
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Likelihood calculations for the Cox model

Estimation is based on the concept of risk sets. Understanding this is central
to understanding risk set sampling (e.g., nested case-control and case-cohort
studies).

The risk set at each failure time is the collection of subjects who were at risk
of failing at that time.

In theory, only one individual can fail at each failure time and we can calculate
the conditional probability of failure for the subject who actually failed.

The partial likelihood function is the product of these conditional probabilities.
Imagine 5 individuals at risk at time ¢ of which one fails.

These individuals have hazards A1, Ao, ..., A5 which may be different since the
individuals have different covariate values.
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Conditional on one of the five failing, the probability it is number 2 is

A2
A+ + A3+ A+ As

Since A\(t) = A\o(t) exp(x3) we can write this as

Ao(t) exp(z20)
Ao(t) exp(x18) + Ao(t) exp(x28) + ... + Ao(t) exp(xs50)

The baseline hazard, A\g(t), cancels and we have

exp(72/3)
queR eXp(xiﬁ)

where R represents the risk set.

The likelihood function is the product of these conditional probabilities.
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If we have k distinct failure times then

k
H exp(z;03) (14)

@ER eXp(xzﬁ)

Note that these calculations do not depend on the underlying failure times;
only the ordering of failure times is important.

Although this is not a likelihood in the strict sense, it is a partial likelihood, it
can for all intents and purposes be treated as a likelihood.

In practice we often observe multiple failures at the same time (ties) and need
to use an approximation to equation 14.

Conceptually similar to a matched (on time) case-control study. Cox partial
likelihood is similar to the likelihood for conditional logistic regression (used
for analysing matched case-control studies).
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Flexible parametric survival models

e Flexible parametric survival models use splines to model the baseline hazard
function.

e Splines are a way of modeling continuous variables in a flexible way.
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Forced to Join at Knots
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Continuous First Derivatives
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Continuous First Derivatives & Second Derivat
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Modelling on the hazard scale requires computationally intensive numerical
integration. Another potential problem is that many parameters might be
needed, since the hazard function can have take any shape.

The flexible parametric survival model is instead using the cumulative hazard,
which is an increasing function.

Parameter estimates are still interpreted as hazard ratios (if a PH model).
Easy to transform to the survival or hazard scale.

The model can be written as:
In(H(t;x)) = s(Int; 7o, K) + B x (15)

where K is the number of knots.
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This is a proportional hazards model, but non-proportional hazards models
(time-dependent effects) can be modeled by including interactions between
covariates and splines for time.

Let's again revisit the example of colon cancer.

We will focus on the HR of cancer-specific death, comparing the two calendar
periods. Adjusting for stage at diagnosis.

First a flexible parametric model with proportional hazards.

Then a flexible parametric model allowing for non-proportional hazards for
stage, i.e. including an interaction between time and stage.
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.stpm3 year8594 i.stage, scale(logcumhazard) df(5) eform

interval]

.95657106

1.137454
6.06093
17.87012

-16.37131

4.472659
-1.395193
—-.7695137
-.3581892
—-1.155432

| exp(b)  Std. err z P>|z]| [95% conf.
_____________ o
xb |
year8594 | .8709789 .0412556 -2.92 0.004 . 7937593
|
stage |
Localised | .9925432 .0690121 -0.11 0.914 .8660937
Regional | 5.057184 .4671619 17.55  0.000 4.219668
Distant | 15.26429 1.227503 33.89 0.000 13.03845
_____________ o
time I
_nsl | -17.7727 .7150095 -24.86 0.000 -19.17409
ns2 | 3.725423 .3812498 9.77 0.000 2.978187
ns3 | -1.48347 .0450404 -32.94 0.000 -1.571748
ns4 | -.833155 .0324707 -25.66  0.000 -.8967963
nsb5 | -.4273332 .0352782 -12.11  0.000 -.4964772
cons | -1.287896 .0675845 -19.06  0.000 -1.420359
Note: Estimates are transformed only in the first equation.
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Patients diagnosed in the later calendar period have 13% lower cancer-specific
mortality compared to earlier calendar period, after controlling for stage at
diagnosis (and the underlying time scale), and this difference is assumed be
the same for all stages.

Patients with regional metastases have more than 5 times the mortality of
patients with localised stage, after controlling for calendar period (and the
underlying time scale), and the effect is assumed to be the same within both
calendar periods.

Patients with distant metastases have more than 15 times the mortality of
patients with localised stage, after controlling for calendar period, and the
effect is assumed to be the same within both calendar periods.

The rest of the parameters are for the splines, and they are not interpreted
one by one. However, together they give the function of the baseline.
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. stpm3 year8594 i.stage, scale(logcumhazard) df(5) tvc(i.stage) dftvc(2) eform

| exp(b)  Std. err. z P>|z| [95% conf. intervall
_________________ o

xb |
year8594 | .867934 .0410771 -2.99 0.003 .7910456 .9522957

|

stage |
Localised | 1.092823 .0808794 1.20 0.230 .9452632 1.263417
Regional | 4.754187 .4791008 15.47 0.000 3.902086 5.792362
Distant | 9.875292 .9344802 24.20 0.000 8.20356 11.88769
_________________ o

time |
nsl | -22.17003 2.23881 -9.90 0.000 -26.55802 -17.78204
ns2 | 5.953271 .9117683 6.53 0.000 4.166238 7.740304
ns3 | -1.305555 .0864285 -15.11 0.000 -1.474952 -1.136158
ns4 | -.7107736 .0659058 -10.78 0.000 -.8399466  -.5816007
ns5 | -.3501687 .062705 -5.58 0.000 -.4730682  -.2272691

|

stage#c._ns_tvcl |
Localised | -6.371534 1.542999 -4.13 0.000 -9.395758 -3.347311
Regional | -4.135436 1.747768 -2.37 0.018 -7.560999 -.7098741
Distant | 4.290003 1.190045 3.60 0.000 1.957558 6.622448

|

stage#tc._ns_tvc2 |
Localised | -.7273528 .2582777 -2.82 0.005 -1.233568 -.2211378
Regional | .607651 . 3044405 2.00 0.046 .0109586 1.204343
Distant | .8604945 .2735432 3.15 0.002 .3243596 1.396629

|
_cons | -1.324706 .0709064 -18.68 0.000 -1.46368 -1.185732
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e Patients diagnosed in the later calendar period have 13% lower cancer-specific
mortality compared to earlier calendar period, after controlling for stage at
diagnosis with non-proportional hazards (and the underlying time scale), and
this difference is assumed be the same for all stages.

e Since stage is allowed to have non-proportional hazards, i.e. an interaction
between stage and the time-scale, the HR changes over time, and is not one
number found in the output.

e However, the HR for stage can be plotted as a function of time.
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What to report after fitting a survival model? - extended
slides

We saw that survival probabilities under different exposure groups are
frequently compared using the Kaplan-Meier estimator.

To adjust for confounding, we often fit survival models e.g Poisson, Cox,
flexible parametric models.

After fitting a survival model the analysis is often summarised using the
hazard ratio (HR).

Many authors have previously argued about limitations related to the use of
HRs.

Let's look an example of relapse-free survival (measured as time from primary
surgery to relapse or death, whichever occurred first) of breast cancer
patients [18].
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Survival probability

Example - Kaplan-Meier survival curves

1.00

0.75

0.50

0.25+

0.00

hormonal therapy
——— no hormonal therapy

0 2 4 6
Years from surgery

10

357



Example - descriptives

Table 1. Summary characteristics of breast cancer patients by treatment arm.

Variables

Age at surgery (years)
Number of positive nodes
Progesterone level (fmol/l)
Differentiation grade

2

3
Tumour size

<=20mm

>20-50 mm

>50 mm

For categorical variables, the number of individuals with relevant proportions is given.

Hormonal therapy: no
N =2643

53 (44-64)

0 (0-3)

46 (5-208)

735 (28%)
1908 (72%)

1283 (49%)
1119 (42%)
241 (9%)

For continuous variables, median with 25th and 75th percentiles are given.

Patients who received hormonal therapy were older, had a higher number of

Hormonal therapy: yes
N=339

62 (57-69)

4 (2-9)

19 (1-117)

59 (17%)
280 (83%)

104 (31%)
172 (51%)
63 (18%)

positive nodes and that there was a larger proportion of patients with a

tumour above 50 mm.



. stpm3 i.hormon i.size i.grade enodes pr_1 age, scale(logcumhazard) df(4) eform tvc(enodes grade) dftvc(3)

O o0 o0 o o0 o0

hormon
yes

size
>20-50mmm
>50 mm

3.grade
enodes
pr_1

age

_ns4

.enodes#c._ns_tvcl
.enodes#c._ns_tvc2
.enodes#c._ns_tvc3
.grade#c._ns_tvcl
.grade#c._ns_tvc2
.grade#c._ns_tvc3

_cons

[95% conf.

interval]

. 7592273

1.361771
1.625127

1.300196
.2190555
.9715277
1.003474

.0600469

.0770583
.1380873

.0880586
.0238754
.0110379
.0019935

.48

.46
.71

.000

.000
.000

.6502056

1.218813
1.375817

1.138569
.1769211
.9501329
.9995741

.8865289

1.521496
1.919615

1.484767
.2712245
.9934044
1.007389

-35.51864
12.92799
-1.123182
-.793257
-7.111718
2.335428
-.494132
5.900617
-2.656424
.1718519
.6945903

8.205041

3.81177
.2690407
.2727313
2.947457
1.557702
.1731998
2.700509
1.361064
.1128028
.1646209

O O O O O O O O O o o

-51.60023

5.457056
-1.650492
-1.327801
-12.88863
-.7176128
-.8335973

.6077163
-5.324061
-.0492375

.3719393

-19.43706
20.39892
-.5958717
-.25687134
-1.334808
5.3884
-.154666
11.19352
.0112134
.3929413
1.017241
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Hazard ratios

e The interpretation of HRs remains challenging as HRs are often
misinterpreted as relative risks.

— The relative risk is the ratio of the probability of experiencing the event by a
specific time for the exposed to the probability for the unexposed.

— The relative risk is always a function of time.

— HRs should be interpreted as relative rates and not relative risks!

e Studies often report a single HR estimate for the whole study follow-up (i.e.
assuming proportional hazards).

— Often an unrealistic assumption and the HR will vary over time.
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Hazard ratios

e The HR is a relative measure and provides no information on whether this
effect is clinically meaningful.

— The corresponding difference in survival probabilities might be very small and
not important from a clinical point of view.

— Absolute measures such as the difference in survival probabilities can be more
informative than relative measures.

e HRs are estimated based on individuals who have survived up to a particular
time.

— As time increases, the characteristics of individuals who are still in follow-up in
each exposure group might differ, resulting in an imbalanced comparison
between exposures.

— This is true even if we have sufficiently adjusted for confounding at the start
of follow-up.

— This is often referred to as built-in selection bias of HR:s.
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Adjusted survival curves

A more informative way to summarise the exposure effect is to use adjusted
survival probabilities.

It can be obtained using standard statistical software.

After fitting a model, adjusted survival probabilities are often estimated using

the average covariate value for the adjusting covariates.

Only one survival curve is estimated for each exposure level based on the
average values of the adjusting covariates.
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Survival probbaility

1.00

0.75

0.50

0.25+

0.00

Example - adjusted survival curves
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Adjusted survival curves

The survival probability of an “average” individual if this “average” individual
received hormonal therapy and an "average” individual who did not receive it.

A caveat with “naively” adjusted survival curves is the need to calculate an
“average’ for included variables.

For continuous variables, the “average” individual (mean value) might be
easy to interpret.

For categorical variables, such as sex, it is not clear what an average
individual is. (e.g. if 40% of the individual were females it will be equal to
0.4) and has no meaning on an individual level (as it does not correspond to
either females or males).

Alternatively, obtain survival curves at fixed values for the adjusting variables
- restricted to a specific covariate pattern.
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Standardised survival curves

e Another way to overcome the need to estimate adjusted survival probabilities
for an “average” individual is to obtain so-called standardised survival
probabilities.

e This is done as follows:

1. Fit a survival model (like the flexible parametric model above)

2. Estimate individual-specific survival probabilities for each individual given the
individual's covariate pattern and if they were exposed (e.g. received
hormonal treatment).

3. Then, the individual-specific survival probabilities are averaged to obtain the
standardised survival probability under exposure.

4. Repeat steps 2-3, if each individual was unexposed (e.g. had received no
hormonal treatment).
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Standardised survival curves

e \We do not calculate an average over those who were exposed and an average
over those who were unexposed.

e This would result on comparing two groups with very different covariate
distributions.

e For a study population of IV individuals, N estimates of individual-specific
survival probabilities are obtained and then averaged to obtain the
standardised survival curve in the whole population under each exposure level.
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Survival probability

Example - Standardised survival curves
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Years from surgery

10

367



Standardised survival curves

e Interpretation: the average survival probabilities if everyone in the study
population had received hormonal treatment or if everyone in the study
population had not received treatment.

e Since the distribution of all other adjusting covariates are the same in the two
standardised probabilities, fairer comparisons between exposed and unexposed

can be made.

e Differences in the two survival curves are not due to differences in e.g.
differences in tumour size.
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Survival probability

Example - Standardised survival curves
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Survival probbaility

Example - Standardised vs adjusted

1.00
0.75+
0.50
0.25
—— hormonal therapy (adjusted)
——— no hormonal therapy (adjusted)
hormonal therapy (standardised)
0004 ~T Mo hormonal therapy (standardised)

0 2 4 6 8 10
Years from surgery
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Example - Difference in standardised survival curves

0.14-
0.12-
0.10-
ooe T
0.06-

0.04

Difference in survival probabilities

0.02

0.00 -~

0 2 4 6 8 10
Years from surgery

This can now be interpreted as risk (e.g., difference in risk of experiencing the
event by a specific time under treatment in comparison to no treatment).
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Standardising within a subset of the population

e Before we used the empirical covariate distribution in the whole population,
I.e., we estimated the average survival probability for the whole population if
everyone was compared to if no one was treated.

e |t may be more relevant to apply the empirical covariate distribution of a
subset of the total study population, such as the covariate distribution among
the treated.

e For instance, how large was the improvement in the probability of being alive

with no relapse for the breast cancer patients who actually received hormonal
therapy?
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Example - over the whole population vs only treated

1.00
0.75+
=
E
®
o]
o
a 0.50+
®©
2
b
=]
n
0.25 :
hormonal therapy (whole population)
——— no hormonal therapy (whole population)
—— hormonal therapy (among treated)
0004 ~~ Mo hormonal therapy (among treated)

0 2 4 6 8 10
Years from surgery
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Comments

e For the standardised survival curves (among treated) we used the same
population to obtain estimates under treatment and under no treatment.

e However, this time only the covariate distribution of a specific subset
(treated) is used for the standardisation.

e The standardised survival probabilities within the treated group is lower than
the survival within the total population.

— This is expected as the patients who had hormonal therapy were older, had a
higher number of positive nodes, and there was a larger proportion of tumours
above 50 mm in comparison to patients who did not receive hormonal therapy.
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