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2 EXERCISE SOLUTIONS
1 Exercise solutions
100. Kaplan-Meier estimates of survival

The hand-calculated results can be found in the Excel file solution_exercise100.x1ls and in the
Stata output for exercise 101.



101. Using Stata to validate the hand calculations done in question [100

First, prepare the data for survival time analysis by using stset.

stset surv_mm, failure(status==1)
[output omitted]

Following is a table of Kaplan-Meier estimates. Although it’s not clear from the table, the person
censored (lost) at time 2 was at risk when the other person dies at time 2. On the following page
is a graph of the survival function.

. sts list

failure _d: status ==

analysis time _t: surv_mm

Beg. Net Survivor Std.
Time Total Fail Lost Function Error [95% Conf. Int.]
2 35 1 1 0.9714 0.0282 0.8140 0.9959
3 33 1 0 0.9420 0.0398 0.7873 0.9852
5 32 1 0 0.9126 0.0482 0.7528 0.9709
7 31 1 0 0.8831 0.0549 0.7178 0.9545
8 30 1 0 0.8537 0.0605 0.6835 0.9364
9 29 1 0 0.8242 0.0652 0.6499 0.9170
11 28 1 0 0.7948 0.0692 0.6171 0.8965
13 27 0 1 0.7948 0.0692 0.6171 0.8965
14 26 0 1 0.7948 0.0692 0.6171 0.8965
19 25 0 1 0.7948 0.0692 0.6171 0.8965
22 24 1 0 0.7617 0.0738 0.5788 0.8733
25 23 0 1 0.7617 0.0738 0.5788 0.8733
27 22 1 1 0.7271 0.0781 0.5394 0.8482
28 20 1 0 0.6907 0.0823 0.4989 0.8213
32 19 2 1 0.6180 0.0882 0.4229 0.7641
33 16 1 0 0.5794 0.0908 0.3837 0.7327
35 15 0 1 0.5794 0.0908 0.3837 0.7327
37 14 0 1 0.5794 0.0908 0.3837 0.7327
43 13 1 0 0.5348 0.0941 0.3376 0.6972
46 12 1 0 0.4902 0.0962 0.2944 0.6600
54 11 0 1 0.4902 0.0962 0.2944 0.6600
77 10 0 1 0.4902 0.0962 0.2944 0.6600
78 9 0 1 0.4902 0.0962 0.2944 0.6600
83 8 0 1 0.4902 0.0962 0.2944 0.6600
85 7 0 1 0.4902 0.0962 0.2944 0.6600
97 6 0 1 0.4902 0.0962 0.2944 0.6600
100 5 0 1 0.4902 0.0962 0.2944 0.6600
102 4 1 0 0.3677 0.1284 0.1377 0.6035
103 3 0 1 0.3677 0.1284 0.1377 0.6035
105 2 0 1 0.3677 0.1284 0.1377 0.6035
108 1 0 1 0.3677 0.1284 0.1377 0.6035

Read the table as follows: If you want the 2-year survival proportion, read off the nearest line where
time is < 24 months. That is, on the row where time is 22 the survival proportion is 0.7617. This
is the probability of surviving up until 24 months (as the function will be flat from time 22 until
the next event at time 27).
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To produce a graph of the Kaplan-Meier estimates:
sts graph, risktable ///

title(Kaplan-Meier estimates of cause-specific survival) ///
xtitle(Time since diagnosis in months)

Kaplan—Meier estimates of cause—specific survival
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Figure 1: Kaplan-Meier plot of the cause-specific survivor function for sample of 35 patients diagnosed
with colon carcinoma. The number at risk at each time point are shown on the curve.

EXTRA: Actuarial method Following are the life table estimates. Note that in the lectures,
when we estimated all-cause survival, there were 8 deaths in the first interval. One of these died of
a cause other than cancer so in the cause-specific survival analysis we see that there are 7 ‘deaths’
and 1 censoring (Stata uses the term ‘lost’ for lost to follow-up) in the first interval.

. ltable surv_mm csr_fail, interval(12)

Beg. Std.

Interval Total Deaths Lost Survival Error [95% Conf. Int.]

0 12 35 7 1 0.7971 0.0685 0.6210 0.8977
12 24 27 1 3 0.7658 0.0726 0.5856 0.8755
24 36 23 5 4 0.5835 0.0901 0.3887 0.7356
36 48 14 2 1 0.4971 0.0953 0.3023 0.6647
438 60 11 0 1 0.4971 0.0953 0.3023 0.6647
72 84 10 0 3 0.4971 0.0953 0.3023 0.6647
84 96 7 0 1 0.4971 0.0953 0.3023 0.6647
96 108 6 1 4 0.3728 0.1292 0.1403 0.6091
108 120 1 0 1 0.3728 0.1292 0.1403 0.6091

Read the table as follows: If you want the 2-year survival proportion, you must survive the second
year, namely the interval 12-24. The survival proportion is 0.7658. This is the probability of
surviving up until 24 months.



102. Comparing various approaches to estimating the 10-year survival proportion

To calculate the Kaplan-Meier estimate for 10-year survival, use stset with the two different
variables surv_yy and surv_mm. To find the 10-year survival proportion, read off the sts list
output at the nearest line where time is <10 years or <120 months.

. use melanoma, clear
. keep if stage==

. stset surv_yy, failure(status==1)
. sts list

. stset surv_mm, failure(status==1)
. sts list

(a)

Kaplan-Meier
Years 0.7729
Months 0.7645

Using surv_mm is most appropriate, since using months as the time unit will reduce the number
of ties (fewer events and censorings will occur at the same time point). If year is the time unit,
then all events and censorings within 12 months of each year will be considered as happening
on the same time. This will influence the precision of the method.

Both estimates are biased, but using month (meaning fewer ties) will make the bias smaller.
The Kaplan-Meier method assumes that all individuals at the time point where survival is
estimated are at risk at the start of that time point. If there are ties, this assumption will
lead to an overestimate of the number of persons at risk during the time point (time interval).
This will therefore underestimate the interval-specific mortality (d/1) at that time point, and
consequently the cumulative survival proportion will be overestimated. On average, we do not
expect those who end their follow-up during a year to contribute risktime that full year, which
is what the method assumes by allowing them to all be at risk at the start of the time point.
The fewer the ties, the smaller this bias will be. Hence, we prefer to use time in months rather
than years, as the bias will be smaller.

EXTRA: The actuarial method is most appropriate because it deals with ties (events and
censorings at the same time) in a more appropriate manner. The actuarial method assumes
that those who are censored during the time interval only contribute with half of the risk time
for that interval, i.e. they are assumed to be censored on average after half a year (or month).
The fact that there are a reasonably large number of ties in these data means that there is a
difference between the Kaplan-Meier and actuarial estimates, and the actuarial method will
be most appropriate. However, when there are fewer ties (if time unit is months), then the two
estimation methods are very similar, and the bias from the Kaplan-Meier method is negligible.

EXTRA: How to obtain the actuarial estimates:

. generate csr_fail=0
. replace csr_fail=1 if status==

. 1ltable surv_yy csr_fail
. ltable surv_mm csr_fail

Kaplan-Meier | Actuarial
Years 0.7729 0.7633
Months 0.7645 0.7637
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Comparing survival, proportions and mortality rates by stage for cause-specific and
all-cause survival
We start by reading the data and listing the first few observations to get an idea about the data.

. use melanoma, clear
(Skin melanoma, diagnosed 1975-94, follow-up to 1995)
. list age sex stage surv_mm surv_yy in 1/30

B e it T +
| age sex stage surv_mm surv_yy |
| - - - -
1. | 81 Female Localised 26.5 2.5 |
2. | 75 Female Localised 55.5 4.5 |
3. | 78 Female Localised 177.5 14.5 |
4. | 75 Female Unknown 29.5 2.5 |
5. | 81 Female Unknown 57.5 4.5 |
O -— -— -— -—t

Now we define the data as survival time (st) data and look at the distribution of stage.

. stset surv_mm, failure(status==1)

failure event: status ==
obs. time interval: (0, surv_mm]
exit on or before: failure
7775 total obs.
0 exclusions
7775 obs. remaining, representing
1913 failures in single record/single failure data
615236.5 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 261.5
. tab stage
Clinical |
stage at |
diagnosis | Freq. Percent Cum.
____________ o —
Unknown | 1,631 20.98 20.98
Localised | 5,318 68.40 89.38
Regional | 350 4.50 93.88
Distant | 476 6.12 100.00
____________ e
Total | 7,775 100.00



(a) Survival depends heavily on stage. It is interesting to note that patients with stage 0 (unknown)
appear to have a similar survival to patients with stage 1 (localized).

sts graph, by(stage)

sts graph, hazard by(stage)
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Figure 2: Skin melanoma. Kaplan-Meier estimates of cause-specific survival and mortality rate for each

stage.

(b)

strate stage

failure
analysis time

d:

_t:

S
S

tatus ==
urv_mm

Estimated rates and lower/upper bounds of 95% confidence intervals
(7775 records included in the analysis)

+- -—- -—- -—- -+
| stage D Y Rate Lower Upper |
|-=-——— |
| Unknown 274 1.2e+05 0.0022239 0.0019756  0.0025035 |
| Localised 1013 4.6e+05 0.0021855 0.0020549 0.0023243 |
| Regional 218 1.8e+04 0.0121091 0.0106038 0.0138281 |
| Distant 408 1.1e+04 0.0388239 0.0352337 0.0427799 |
+- -—- -—- -—- -—- -+

The time unit (defined when we stset the data) is months (since we specified surv_mm as the
analysis time). Therefore, the units of the rates shown above are events/person-month. We
could multiply these rates by 12 to obtain estimates with units events/person-year or we can
change the default time unit by specifying the scale() option when we stset the data. For

example,



. stset surv_mm, failure(status==1) scale(12)
. strate stage

d: ==

t:

status
surv_mm/12

failure
analysis time

EXERCISE SOLUTIONS

Estimated rates and lower/upper bounds of 95, confidence intervals

(7775 records included in the analysis)

T T +
| stage D Y Rate Lower Upper |
|-==——mm - - -
| Unknown 274 1.0e+04 0.026687 0.023707 0.030042 |
| Localised 1013 3.9e+04 0.026225 0.024659 0.027891 |
| Regional 218 1.5e+03  0.145309 0.127245 0.165937 |
| Distant 408 875.7500 0.465886  0.422804 0.513359 |
+- -— -— -— -— ———

(c) To obtain mortality rates per 1000 person years:

. Strate stage, per(1000)

_d:
t:

status
surv_mm/12

failure
analysis time

Estimated rates (per 1000) and lower/upper bounds of 95% confidence intervals

(7775 records included in the analysis)

+- -—- -—- e +
| stage D Y Rate Lower Upper |
|- I
| Unknown 274 10.2671 26.687 23.707 30.042 |
| Localised 1013  38.6266 26.225 24.659 27.891 |
| Regional 218 1.5003 145.309 127.245 165.937 |
| Distant 408 0.8758  465.886  422.804 513.359 |
oo -—- -—- - +

(d) We see that the crude mortality rate is higher for males than females, a difference which is

also reflected in the survival and hazard curves (

. sStrate sex, per(1000)

d:

t:

status
surv_mm/12

failure
analysis time

Figure [3)).

Estimated rates (per 1000) and lower/upper bounds of 95% confidence intervals

(7775 records included in the analysis)

+ ____________________________________________________

| sex D Y Rate Lower Upper |

|-===mmm ittt

| Male 1074 21.9689 48.887 46.049 51.900 |

| Female 839 29.3008 28.634 26.761 30.639 |

+ ______________________ ——— = e e e e .
. sts graph, by(sex)
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Figure 3: Skin melanoma (all stages). Kaplan-Meier estimates of cause-specific survival and mortality

for each sex.

(e) The majority of patients are alive at end of study. 1,913 died from cancer while 1,134 died
from another cause. The cause of death is highly depending of age, as young people die less

from other causes.

codebook status

status

type:
label:

range:
unique values:

tabulation:

. tab status agegrp

Vital status at
exit

Alive
cancer
other

Dead:
Dead:
Lost to follow-up

|
I
+
|
I
|
|
+
|

numeric (byte)

Vital status at exit

status
[0,4] units: 1
4 missing .: 0/7775
Freq. Numeric Label
4720 0 Alive
1913 1 Dead: cancer
1134 2 Dead: other
8 4 Lost to follow-up
Age in 4 categories
0-44 45-59 60-74 75+ | Total
1,615 1,568 1,178 359 | 4,720
386 522 640 365 | 1,913
39 147 461 487 | 1,134
6 1 1 0 | 8
____________________________________________ O
2,046 2,238 2,280 1,211 | 7,775
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(f) . stset surv_mm, failure(status==1,2)

failure event: status == 1 2
obs. time interval: (0, surv_mm]
exit on or before: failure

7775 total obs.
0 exclusions

7775 obs. remaining, representing
3047 failures in single record/single failure data

615236.5 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 251.5

The survival is worse for all-cause survival than for cause-specific, since you now can die from
other causes, and these deaths are incorporated in the Kaplan-Meier estimates. The ”other
cause” mortality is particularly present in patients with localised and unknown stage.

. sts graph, by(stage) name(anydeath, replace)
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Figure 4: Skin melanoma (all stages). Kaplan-Meier estimates of all-cause survival for each stage.

(g) We see that the “other” cause mortality is particularly influential in patients with localised
and unknown stage. Patients with localised disease, have a better prognosis (i.e. the cancer
does not kill them), and are thus more likely to experience death from another cause. For
regional and distant stage, the cancer is more aggressive and is the cause of death for most of
these patients (i.e. it is the cancer that kills these patients before they have “the chance” to
die from something else).
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stset surv_mm, failure(status==1)

sts graph if agegrp==3, by(stage) ///
name (cancerdeath_75, replace) ///
subtitle("Cancer")

stset surv_mm, failure(status==1,2)

sts graph if agegrp==3, by(stage) ///
name (anydeath_75, replace) ///
subtitle("All cause")

. graph combine cancerdeath_75 anydeath_75, iscale(0.5)

Kaplan—-Meier survival estimates Kaplan—-Meier survival estimates
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Figure 5: Skin melanoma (all stages). Kaplan-Meier estimates of all-cause survival versus cause-specific
survival for each stage.

(h) . use melanoma, clear

stset surv_mm, failure(status==1,2)
sts graph, by(agegrp) ///
name (anydeathbyage, replace) ///
subtitle("All cause")

stset surv_mm, failure(status==1)

sts graph, by(agegrp) ///
name (cancerdeathbyage, replace) ///
subtitle("Cancer")

[output omitted]
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104. Comparing estimates of cause-specific survival between periods

. use melanoma if stage==1, clear
(Skin melanoma, diagnosed 1975-94, follow-up to 1995)

stset surv_mm, failure(status==1)

failure event: status ==
obs. time interval: (0, surv_mm]
exit on or before: failure

5318 total obs.
0 exclusions

5318 obs. remaining, representing
1013 failures in single record/single failure data
463519 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t 251.5

sts graph, by(year8594)

Kaplan—Meier survival estimates
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Figure 6: Skin melanoma. Kaplan-Meier plot of the cause-specific survivor function for each calendar
period of diagnosis

(a) There seems to be a clear difference in survival between the two periods. Patients diagnosed
during 1985-94 have superior survival to those diagnosed 1975-84.
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(b) . sts graph, hazard by(year8594)

Smoothed hazard estimates
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Figure 7: Skin melanoma. Plot of the cause-specific hazard for each calendar period of diagnosis

The plot shows the instantaneous cancer-specific mortality rate (the hazard) as a function
of time. It appears that mortality is highest approximately 40 months following diagnosis.
Remember that all patients were classified as having localised cancer at the time of diagnosis
so we would not expect mortality to be high directly following diagnosis.

The plot of the hazard clearly illustrates the pattern of cancer-specific mortality as a function
of time whereas this pattern is not obvious in the plot of the survivor function.

Cc) . sts test year8594
(c) y

Log-rank test for equality of survivor functions

| Events
year8594 | observed expected
Diagnosed 75-84 | 572 512.02
Diagnosed 85-94 | 441 500.98
Total | 1013 1013.00
chi2(1) = 15.50
Pr>chi2 = 0.0001

. sts test year8594, wilcoxon

Wilcoxon (Breslow) test for equality of survivor functions

| Events Sum of

year8594 | observed expected ranks

Diagnosed 75-84 | 572 512.02 251185

Diagnosed 85-94 | 441 500.98 -251185

Total | 1013 1013.00 0
chi2(1) = 16.74

Pr>chi2

0.0000
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There is strong evidence that survival differs between the two periods. The log-rank and the
Wilcoxon tests give very similar results. The Wilcoxon test gives more weight to differences
in survival in the early period of follow-up (where there are more individuals at risk) whereas
the log rank test gives equal weight to all points in the follow-up. Both tests assume that, if
there is a difference, a proportional hazards assumption is appropriate.

We see that mortality increases with age at diagnosis (and survival decreases).

. strate agegrp, per(1000)

failure _d: status ==

analysis time _t: surv_mm

Estimated rates (per 1000) and lower/upper bounds of 95\), confidence intervals
(6318 records included in the analysis)
+- -—- e EEEEEEEEEEEE +

| agegrp D Y Rate Lower Upper |

I- - - -

| 0-44 217 157.1215 1.3811 1.2090 1.5776 |

| 45-59 282 148.8215 1.8949 1.6861 2.1295 |
|
|

| 60-74 333 121.3380 2.7444 2.4649  3.0556
| 75+ 181 36.2380 4.9948 4.3176 5.7781

The rates are (cause-specific) deaths per 1000 person-months. When we stset we defined time
as time in months and then asked for rates per 1000 units of time.

. sts graph, by(agegrp)
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Figure 8: Skin melanoma. Plot of the cause-specific survival function for each age group
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(e) . stset surv_mm, failure(status==1) scale(12)

failure event: status ==
obs. time interval: (0, surv_mm]
exit on or before: failure
t for analysis: time/12

5318 total observations
0 exclusions

5318 observations remaining, representing
1013 failures in single-record/single-failure data
38626.58 total analysis time at risk and under observation

at risk from t = 0
earliest observed entry t = 0
last observed exit t = 20.95833

sts graph, by(agegrp)
[output omitted]

strate agegrp, per(1000)

failure _d: status ==

analysis time _t: surv_mm/12

Estimated rates (per 1000) and lower/upper bounds of 95% confidence intervals
(5318 records included in the analysis)

+- - - -+
| agegrp D Y Rate Lower Upper

|
|
0-44 217 13.0935 16.573  14.508 18.932 |
45-59 282 12.4018 22.739 20.234 25.554 |
10.1115  32.933 29.579 36.667 |

75+ 181 3.0198 59.937 51.812 69.337 |

(o))
9
~
N
w
w
w

(f) . sts graph, by(sex)
sts graph, hazard by(sex) noshow
[output omitted]

strate sex, per(1000)

failure _d: status ==
analysis time _t: surv_mm/12
Estimated rates (per 1000) and lower/upper bounds of 95% confidence intervals
(5318 records included in the analysis)

| Male 542 16.0974 33.670 30.952 36.627 |
| Female 471 22.5292 20.906 19.101 22.882 |

Males seem to have a higher mortality rate compared to females. This difference is also
statistically significant according to the log-rank test below.
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. sts test sex

failure _d: status ==

analysis time _t: surv_mm/12

Log-rank test for equality of survivor functions

| Events Events

sex | observed expected
_______ fom— e —_— —_—
Male | 542 432.55
Female | 471 580.45
_______ fom e —_— —_—
Total | 1013 1013.00

chi2(1) = 48.55

Pr>chi2 0.0000
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110. Tabulating incidence rates and modelling with Poisson regression

(a) We see that individuals with a high energy intake have a lower CHD incidence rate. The

~—

estimated crude incidence rate ratio is 0.52.

. strate hieng, per(1000)

Estimated rates (per 1000) and lower/upper bounds of 95J, confidence intervals
(337 records included in the analysis)

| low 28 2.0594 13.5960 9.3875 19.6912 |
| high 18 2.5442 7.0748 4.4574 11.2291 |
+- e e +

. display 7.0748/13.596
.52035893

The IRR calculated by the Poisson regression is the same as the IRR calculated in (a). A
theoretical observation: If we consider the data as being cross classified solely by hieng then
the Poisson regression model with one parameter is a saturated model so the IRR estimated
from the model will be identical to the ‘observed’ IRR. That is, the model is a perfect fit.

. poisson chd hieng, e(y) irr

Poisson regression Number of obs = 337
LR chi2(1) = 4.82
Prob > chi2 = 0.0282
Log likelihood = -175.0016 Pseudo R2 = 0.0136
chd | IRR Std. Err. z P>|z]| [95\% Conf. Intervall
hieng | .5203602 .1572055 -2.16 0.031 .2878382 .9407184
_cons | .013596 .00256694 -22.74 0.000 .0093875 .0196912
| 1 (exposure)

1n(y)

The model formulation for the previous poisson model can be written:

In(A) = By + Brhieng

A histogram (Figure @ gives us an idea of the distribution of energy intake. We can also
tabulate moments and percentiles of the distribution using the summarize command.

. histogram energy, normal
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Figure 9: Histogram of energy with superimposed normal density curve (with the sample mean and
variance).

. sum energy, detail

Total energy (kcals per day)

Percentiles Smallest

1% 1876.13 1748.43

5% 2168.86 1854.02
10% 2311.24 1858.8 Obs 337
25% 2536.69 1876.13 Sum of Wgt. 337
50% 2802.98 Mean 2828.872
Largest Std. Dev. 441.7528

75% 3109.66 4063.02
90% 3366.61 4234.06 Variance 195145.5
95% 3595.05 4256.81 Skewness .4430434
997% 4063.02 4395.75 Kurtosis 3.506768

(e) . egen eng3=cut(energy), at(1500,2500,3000,4500)
. tabulate eng3

eng3 | Freq. Percent Cum.

1500 | 75 22.26 22.26

2500 | 150 44 .51 66.77

3000 | 112 33.23 100.00

____________ e
Total | 337 100.00

(f) We see that the CHD incidence rate decreases as the level of total energy intake increases.

. strate eng3,per(1000)

Estimated rates (per 1000) and lower/upper bounds of 95 Cis
(337 records included in the analysis)

| 1500 16 0.9466 16.9020 10.3547 27.5892 |
| 2500 22 2.0173 10.9059 7.1810 16.5629 |
| 3000 8 1.6398 4.8787 2.4398 9.7555 |
+- -—- -—- —————— +




(h)

The incidence rate ratio for the second level (to the first) is:

. display 10.9059/16.9020
.64524317

The incidence rate ratio for the third level (to the first) is:

. display 4.8787/16.9020
.28864631

. tabulate eng3, gen(X)

eng3 | Freq. Percent Cum.
1500 | 75 22.26 22.26
2500 | 150 44 .51 66.77
3000 | 112 33.23 100.00
Total | 337 100.00

. list energy eng3 X1 X2 X3 if eng3==1500 in 1/100
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-— -— -— —+

| energy eng3 X1 X2 X3 |

| 2023.25 1500 1
| 2448.68 1500 1
| 2281.38 1500 1
| 2467.95 1500 1
| 2362.93 1500 1

O W N

- -—- -+

76. | 2664.64 2500 0 1 0 |
77. | 2533.33 2500 0 1 0 |
78. | 2854.08 2500 0 1 (O
79. | 2673.77 2500 0 1 0 |
80. | 2766.88 2500 0 1 0 |

I

. list energy eng3 X1 X2 X3 if eng3==3000 in 200/300
o -—- —-—+

| energy eng3 X1 X2 X3 |

226. | 3067.36 3000 0 0 1]
227. | 3298.95 3000 0 0 1]
228. | 3147.6 3000 0 0 1]
229. | 3180.47 3000 0 0 1]
230. | 3045.81 3000 0 0 1]

I

(i) Level 1 of the categorized total energy is the reference category. The estimated rate ratio
comparing level 2 to level 1 is 0.6452 and the estimated rate ratio comparing level 3 to level 1
is 0.2886.

. poisson chd X2 X3, e(y) irr

Poisson regression Number of obs = 337
LR chi2(2) = 9.20
Prob > chi2 = 0.0100
Log likelihood = -172.81043 Pseudo R2 = 0.0259
chd | IRR Std. Err z P>|z]| [95% Conf. Interval]
_____________ Fm——————————— —_——— —_——— ———— = = o —— —
X2 | .6452416  .2120034 -1.33 0.182 .3388815 1.228561
X3 | .2886479  .1249882 -2.87 0.004 .1235342 .6744495
_cons | .016902  .0042255 -16.32 0.000 .0103547 .0275892

In(y) | 1 (exposure)

(j) The model formulation for the previous poisson model can be written:

In(A) = Bo + £1X2 + 32X3
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(k) Now use level 2 as the reference (by omitting X2 but including X1 and X3). The estimated
rate ratio comparing level 1 to level 2 is 1.5498 and the estimated rate ratio comparing level
3 to level 2 is 0.4473.

. poisson chd X1 X3, e(y) irr

Poisson regression Number of obs 337
LR chi2(2) = 9.20
Prob > chi2 = 0.0100
Log likelihood = -172.81043 Pseudo R2 = 0.0259
chd | IRR  Std. Err z P>|z]| [95% Conf. Interval]
X1 | 1.549807 .5092114 1.33 0.182 .8139601 2.950884
X3 | .4473485 .1846929 -1.95 0.051 .1991671 1.004788
_cons | .0109059 .00232561  -21.19  0.000 .007181 .0165629
In(y) | 1 (exposure)

The model formulation is similar to the previous, but now X2 has been replaced by X1 indi-

cating that X2 is now the reference.

In(A) = Bo + A1 X1 + B2X3

The estimates are identical (as we would hope) when we have Stata create indicator variables

for us.

. poisson chd i.eng3, e(y) irr

Poisson regression Number of obs = 337
LR chi2(2) = 9.20
Prob > chi2 = 0.0100
Log likelihood = -172.81043 Pseudo R2 = 0.0259
chd | IRR  Std. Err. z P>|z| [95% Conf. Interval]
_____________ +___ —_— —_— —_— —_————————————

eng3 |
2500 | .6452416 .2120034 -1.33 0.182 .3388815 1.228561
3000 | .2886479 .1249882 -2.87 0.004 .1235342 .6744495

|
_cons | .016902 .0042255 -16.32  0.000 .0103547 .0275892

In(y) | 1 (exposure)

Somehow (there are many different alternatives) you need to calculate the total number of

events and the total person-time at risk and then calculate the incidence rate as events/person-
time. For example,

. summarize y chd

Variable | Obs Mean Std. Dev. Min Max
y | 337 13.66074 4.777274 .2874743 20.04107
chd | 337 .1364985 . 3438277 0 1

. display (337%0.1364985)/(337*13.66074)
.00999203

The estimated incidence rate is 0.00999 events per person-year (note that the two 337’s cancel
in the calculations are are only included for completeness). We get the same answer using
stptime.
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. stset dox, id(id) fail(chd) or(doe) scale(365.24)

. stptime
Cohort | person-time failures rate
total | 4603.7948 46  .00999176

To give these estimates per 1000 person-years, they can simply be multiplied by 1000, or the
per (1000) option of stptime can be used.
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111. Model cause-specific mortality with poisson regression

. use melanoma if stage==1, clear
. stset surv_mm, failure(status==1) scale(12) id(id)

(a) 1. Survival is better during the latter period (85-94).

Kaplan—Meier survival estimates

o
o
< Diagnosed 1975-84
~ N T Diagnosed 1985-94
n
~ 4
o
o
n
o
o
AN
(=]
o
C)_ -
o I / I I
3 : 10 15 20
analysis time

Figure 10: Localised melanoma. Kaplan-Meier estimates of cause-specific survival.

ii. Mortality is lower during the latter period.

Smoothed hazard estimates

Diagnosed 1975-84
————— Diagnosed 1985-94

0 5 10 15 20
analysis time

Figure 11: Localised melanoma. Smoothed cause-specific hazards (cause-specific mortality rates).
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iii. The two graphs both show that prognosis is better during the latter period. Patients
diagnosed during the latter period have lower mortality and higher survival.

(b)

. strate year8594, per(1000)

failure _d: status ==
analysis time _t: surv_mm/12
id: id

Estimated rates (per 1000) and lower/upper bounds of 95% confidence
intervals (5318 records included in the analysis)

T i +
| year8594 D Y Rate Lower Upper |
I- - - - -
| Diagnosed 75-84 572 22.6628 25.240 23.254 27.395 |
| Diagnosed 85-94 441 15.9638 27.625 25.163  30.327 |
+- -—- -—- -—- -—+

The estimated mortality rate is lower for patients diagnosed during the early period. This is
not consistent with what we saw in previous analyses. The inconsistency is due to the fact that
we have not controlled for time since diagnosis. Look at the graph of the estimated hazards
(on the previous page) and try and estimate the overall average value for each group. We see
that the average hazard for patients diagnosed in the early period is drawn down by the low
mortality experienced by patients 10 years subsequent to diagnosis.

1. . stset surv_mm, failure(status==1) scale(12) id(id) exit(time 120)

()

id: id
failure event: status ==
obs. time interval: (surv_mm[_n-1], surv_mm]
exit on or before: time 120
t for analysis: time/12

5318 total observations

0 exclusions
5318 observations remaining, representing
5318 subjects
960 failures in single-failure-per-subject data
32376.67 total analysis time at risk and under observation

at risk from t = 0
earliest observed entry t = 0
last observed exit t = 10

. strate year8594, per(1000)

failure _d: status ==
analysis time _t: surv_mm/12
exit on or before: time 120
id: id

Estimated rates (per

1000) and lower/upper bounds of 95} confidence

intervals (5318 records included in the analysis)

+ -—- -—- —-——+
| year8594 D Y Rate Lower Upper |
[-===-—== - it |
| Diagnosed 75-84 519 16.5010 31.453 28.860 34.278 |
| Diagnosed 85-94 441 156.8756  27.778 25.303 30.496 |
tommm -—- -—- -—- ——+

Now that we have restricted follow-up to a maximum of 10 years we see that the average
mortality rate for patients diagnosed in the early period is higher than for the latter period.
This is consistent with the graphs we examined in part (a).
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ii. 27.778/31.453 = 0.883159. Patients diagnosed with localised melanoma in years 85-94
have approximately 12% lower mortality (due to melanoma) than those diagnosed in years
75-84.

ili. . streg i.year8594, dist(exp)

_t | Haz. Ratio Std. Err. z P>|z| [95\% Conf. Intervall
_________________ P — — —— —

year8594 |
Diagnosed 85-94 | .8831852 .0571985 -1.92 0.055 7779016 1.002718
_cons | .0314526 .0013806 -78.81 0.000 .0288597 .0342783

We see that Poisson regression is estimating the mortality rate ratio which, in this simple
example, is the ratio of the two mortality rates.

iv. In(A\) = By + B1year8594

. stsplit fu, at(0(1)10) trim
(no obs. trimmed because none out of range)
(28991 observations (episodes) created)

It seems reasonable (at least to me) that melanoma-specific mortality is lower during the first
year. These patients were classified as having localised skin melanoma at the time of diagnosis.
That is, there was no evidence of metastases at the time of diagnosis although many of the
patients who died would have had undetectable metastases or micrometastases at the time of
diagnosis. It appears that it takes at least one year for these initially undetectable metastases
to progress and cause the death of the patient.

. strate fu, per(1000) graph

failure _d: status ==
analysis time _t: surv_mm/12
exit on or before: time 120
id: id

Estimated rates (per 1000) and lower/upper bounds of 95% confidence
intervals (34309 records included in the analysis)

+- -— -— -— ——t
| fu D Y Rate Lower Upper |
I- --- -
| 0 71 5.2570 13.5058 10.7029 17.0427 |
| 1 228 4.8579 46.9337 41.2204 53.4388 |
| 2 202 4.2355 47.6926 41.5490 54.7446 |
| 3 138 3.7116  37.1809 31.4674  43.9318 |
| 4 100 3.2656 30.6224 25.1721 37.2528 |
I- --- -
| 5 80  2.8647 27.9265 22.4310 34.7683 |
| 6 56 2.5248 22.1800 17.0693 28.8210 |
| 7 35 2.1902 15.9799 11.4735 22.2563 |
| 8 34 1.8864 18.0240 12.8787 25.2250 |
| 9 16 1.5830 10.1071 6.1919 16.4979 |
+- -— ——

The pattern is similar. The plot of the mortality rates (Figure could be considered an
approximation to the ‘true’ functional form depicted in Figure By estimating the rates
for each year of follow-up we are essentially approximating the curve in Figure using a
step function. It would probably be more informative to use narrower intervals (e.g., 6-month
intervals) for the first 6 months of follow-up.
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Figure 12: Localised melanoma. Disease-specific mortality rates as a function of time since diagnosis
(annual intervals).

Smoothed hazard estimate

T T
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analysis time

Figure 13: Localised melanoma. Disease-specific mortality rates as continuous function of time since
diagnosis (using a smoother).



27

(g) . streg i.fu, dist(exp)

Exponential regression -- log relative-hazard form
No. of subjects = 5318 Number of obs = 34309
No. of failures = 960
Time at risk = 32376.66667
LR chi2(9) = 205.01
Log likelihood =  -3264.6254 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ T —— _— _— — _—
fu |
1| 3.475077 4722842 9.17  0.000 2.662447 4.535737
2 | 3.531267 .4871997 9.14 0.000 2.694589 4.627737
3 | 2.752957 .4020721 6.93 0.000 2.067667 3.665374
4 | 2.267352 .3518745 5.27 0.000 1.672705 3.073395
5 | 2.067738 .3371396 4.46 0.000 1.502136 2.846308
6 | 1.642261 .2935086 2.78 0.006 1.156947 2.331153
7 | 1.183189 .2443677 0.81 0.415 .7893192 1.773598
8 | 1.334537 .2783278 1.38 0.166 .8867597 2.008422
9 | . 7483544 .2070989 -1.05 0.295 .4350575 1.287265
[
cons | .0135058 .0016028 -36.27  0.000 .0107029 .0170427

The pattern of the estimated mortality rate ratios mirrors the pattern we saw in the plot of
the rates. Note that the first year of follow-up is the reference so the estimated rate ratio
labelled 1 for fu is the rate ratio for the second year compared to the first year.

i. In(A) = Bo + Bifur_2 + Bafus 3 + Bsfuz_g + Bafuy_s + Bsfus_¢ + Befug_7 + Brfur_g +
Bsfug_g + Bgfug_1¢9, where fu;_o indicates follow-up between years 1 and 2.

(h) . streg i.fu i.year8594, dist(exp)

Exponential PH regression

No. of subjects = 5,318 Number of obs = 34,309
No. of failures = 960
Time at risk = 32376.66667
LR chi2(10) = 218.85
Log likelihood = -3257.7021 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. z P>zl [95% Conf. Intervall
fu |
1 | 3.467801 .4712995 9.156 0.000 2.656866 4.526251
2 | 3.503269 .4833963 9.09 0.000 2.673136 4.591198
3 | 2.711162 .3961271 6.83 0.000 2.036041 3.610141
4 | 2.213063 .3437536 5.11 0.000 1.632214 3.000615
5 | 1.998642 .3263829 4.24 0.000 1.451215 2.752569
6 | 1.569936 .2812163 2.52 0.012 1.105121 2.230254
7 | 1.114537 .2308644 0.52 0.601 .7426385 1.672676
8 | 1.234277 .2586587 1.00 0.315 .818526 1.8612
9 | .6754363 .1877805 -1.41 0.158 .3916867 1.164743
|
year8594 |
Diagnosed 85-94 | .7831406 .0515257 -3.72 0.000 .6883924 .8909297
_cons | .0155123 .0019207 -33.65 0.000 .0121698 .0197728

The estimated mortality rate ratio is 0.7831406 compared to 0.8831852 (part ¢) and a value
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greater than 1 in part (b). The estimate we obtained in part (b) was subject to confounding
by time-since-diagnosis. In part (c) we restricted to the first 10 years of follow-up subsequent
to diagnosis. This did not, however, completely remove the confounding effect of time since
diagnosis. There was still some confounding within the first 10 years of follow-up (if this is not
clear to you then look in the data to see if there are associations between the confounder and
the exposure and the confounder and the outcome) so the estimate was subject to residual
confounding. Now, when we adjust for time since diagnosis we see that the estimate changes
further.

. streg i.fu i.agegrp i.year8594 i.sex, dist(exp)

Exponential PH regression

No. of subjects = 5,318 Number of obs = 34,309
No. of failures = 960
Time at risk = 32376.66667
LR chi2(14) = 418.10
Log likelihood =  -3158.0791 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. z P>zl [95% Conf. Intervall
fu |
1| 3.554685 .4831685 9.33 0.000 2.723341 4.63981
2 | 3.693498 .509924 9.46 0.000 2.81787 4.841218
3 | 2.932197 .4288972 7.35 0.000 2.201337 3.905707
4 | 2.447753 .3808518 5.75 0.000 1.804376 3.320536
5 | 2.256233 .3693067 4.97 0.000 1.63703 3.109646
6 | 1.797453 .3227726 3.27 0.001 1.26417 2.555699
7 | 1.288667 .2675039 1.22  0.222 .8579195 1.935685
8 | 1.43946 .3023764 1.73 0.083 .953661 2.172726
9 | .7961573 .2216843 -0.82 0.413 .4613046 1.374073
I
agegrp |
45-59 | 1.327795 .125042 3.01 0.003 1.104005 1.596948
60-74 | 1.862376 .169244 6.84 0.000 1.558527 2.225464
75+ | 3.400287 .3551404 11.72 0.000 2.770846 4.172715
|
year8594 |
Diagnosed 85-94 | .7224105 .0478125 -4.91 0.000 .6345233 .8224709
|
sex |
Female | .5875465 .0384565 -8.12 0.000 .5168076 .667968
_cons | .0126917 .0018177 -30.49 0.000 .0095854 .0168046

i. For patients of the same sex diagnosed in the same calendar period, those aged 60-74 at
diagnosis have an estimated 86% higher risk of death due to skin melanoma than those
aged 0-44 at diagnosis. The difference is statistically significant.

ii. The parameter estimate for period changes from 0.78 to 0.72 when age and sex are added
to the model. Whether this is ‘strong confounding’, or even ‘confounding’ is a matter of
judgement. I would consider this confounding but not strong confounding but there is no
correct answer.

iii. Age (modelled as a categorical variable with 4 levels) is highly significant in the model.

. test l.agegrp 2.agegrp 3.agegrp

(1) [_tll.agegrp = 0O
(2 [_t]l2.agegrp =0
(3) [_tl3.agegrp = 0



)

(k)

chi2( 3)
Prob > chi2

155.82
0.0000

. streg i.fu i.agegrp i.year8594##i.sex, dist(exp)

Exponential PH regression

29

No. of subjects = 5,318 Number of obs = 34,309
No. of failures = 960
Time at risk = 32376.66667
LR chi2(15) = 418.29
Log likelihood =  -3157.9807 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err z P>zl [95\% Conf. Intervall]
fu |
1 | 3.554795 .4831838 9.33 0.000 2.723425 4.639955
2 | 3.693547 .5099324 9.46  0.000 2.817906 4.841287
3 | 2.932013 .4288725 7.35 0.000 2.201195 3.905468
4 | 2.447604 .3808316 5.75 0.000 1.804262 3.320341
5 | 2.25602 .3692772 4.97 0.000 1.636868 3.109367
6 | 1.797325 .3227558 3.26 0.001 1.264071 2.555534
7 | 1.288401 .267454 1.22  0.222 .8577355 1.935301
8 | 1.439152 .3023187 1.73 0.083 .9534478 2.172282
9 | .7958958 .221615 -0.82 0.412 .4611492 1.373634
|
agegrp |
45-59 | 1.326709 .1249663 3.00 0.003 1.103059 1.595705
60-74 | 1.861131 .1691561 6.83 0.000 1.557443 2.224035
75+ | 3.399539 .3550374 11.72  0.000 2.770277 4.171737
|
year8594 |
Diagnosed 85-94 | .7414351 .0655414 -3.38 0.001 .6234888 .8816936
|
sex |
Female | .6031338 .0531555 -5.74  0.000 .5074526 .716856
|
year8594#sex |
Diagnosed 85-94#Female | .9437245 .1232639 -0.44 0.657 .7305772 1.219058
|
_cons | .0125379 .00183 -30.00 0.000 .0094185 .0166904

The interaction term is not statistically significant indicating that there is no evidence that

the effect of sex is modified by period. The model formulation is:

In(A\) = By + Bifui_o + Bafus_3 + Bsfug_y4 + Bafuy_s5 + Bsfus_¢ + Belfug_7 + Srfur_g + Bsfug_o+
Bofug_10 + B10aged5-59 + P11age60-74 + Bi2age75+ + Bi3year8594 + B14female+
B1syear8594 x female

i. The effect of sex for patients diagnosed 1975-84 is 0.6031338 and the effect of sex for
patients diagnosed 1985-94 is 0.6031338 x 0.9437245 = 0.56919214.
ii. We can use lincom to get the estimated effect for patients diagnosed 1985-94.

. lincom 2.sex + 1.year8594#2.sex, eform

(1) [_tl2.sex + [_t]1l.year8594#2.sex = 0
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_t | exp(b)

Std. Err.

.0656267

-5.80

P>|z|

0.000

.4705541

[95% Conf. Intervall

.6885069

The advantage of lincom is that we also get a confidence interval (not easy to calculate
by hand since the SE is a function of variances and covariances).

. gen sex_early=(sex==2)*(year8594==0)
. gen sex_latter=(sex==2)*(year8594==1)
. streg i.fu i.agegrp i.year8594 sex_early sex_latter, dist(exp)

Exponential PH regression

No. of subjects = 5,318 Number of obs = 34,309
No. of failures = 960
Time at risk = 32376.66667
LR chi2(15) 418.29
Log likelihood = -3157.9807 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err z P>|z| [95\% Conf. Intervall]
_________________ o _— _— _— —_—
fu |
1 | 3.554795 .4831838 9.33 0.000 2.723425 4.639955
2 | 3.693547 .5099324 9.46 0.000 2.817906 4.841287
3 | 2.932013 .4288725 7.35 0.000 2.201195 3.905468
4 | 2.447604 .3808316 5.75 0.000 1.804262 3.320341
5 | 2.25602 .3692772 4.97 0.000 1.636868 3.109367
6 | 1.797325 .3227558 3.26 0.001 1.264071 2.555534
7 | 1.288401 .267454 1.22  0.222 .8577355 1.935301
8 | 1.439152 .3023187 1.73 0.083 .9534478 2.172282
9 | .7958958 .221615 -0.82 0.412 .4611492 1.373634
|
agegrp |
45-59 | 1.326709 .1249663 3.00 0.003 1.103059 1.595705
60-74 | 1.861131 .1691561 6.83 0.000 1.557443 2.224035
75+ | 3.399539 .3550374 11.72 0.000 2.770277 4.171737
|
year8594 |
Diagnosed 85-94 | .7414351 .0655414 -3.38 0.001 .6234888 .8816936
sex_early | .6031338 .0531555 -5.74 0.000 .5074526 .716856
sex_latter | .5691922 .055267 -5.80 0.000 .4705541 .6885069
_cons | .0125379 .00183 -30.00 0.000 .0094185 .0166904



iv. . streg i.fu i.agegrp i.year8594 i.year8594#i.sex, dist(exp)
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Exponential regression -- log relative-hazard form
No. of subjects = 5318 Number of obs = 34309
No. of failures = 960
Time at risk = 32376.66667
LR chi2(15) = 418.29
Log likelihood =  -3157.9807 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err z P>|z| [95% Conf. Intervall
fu |
1 | 3.554795  .4831838 9.33 0.000 2.723425 4.639955
2 | 3.693547 .5099324 9.46 0.000 2.817906 4.841287
3 | 2.932013  .4288725 7.35 0.000 2.201195 3.905468
4 | 2.447604  .3808316 5.75 0.000 1.804262 3.320341
5 | 2.25602  .3692772 4.97 0.000 1.636868 3.109367
6 | 1.797326  .3227558 3.26  0.001 1.264071 2.5555634
71 1.288401 .267454 1.22  0.222 .8577355 1.935301
8 | 1.439152  .3023187 1.73  0.083 .9534478 2.172282
9 | .7958958 .221615 -0.82  0.412 4611492 1.373634
|
agegrp |
45-59 | 1.326709  .1249663 3.00 0.003 1.103059 1.595705
60-74 | 1.861131  .1691561 6.83  0.000 1.557443 2.224035
75+ |  3.399539  .3550374 11.72  0.000 2.770277 4.171737
[
year8594 |
Diagnosed 85-94 | .7414351  .0655414 -3.38 0.001 .6234888 .8816936
[
year8594#sex |
Diagnosed 75-84#Female | .6031338  .0531555 -5.74  0.000 .5074526 .716856
Diagnosed 85-94#Female | .5691922 .055267 -5.80 0.000 .4705541 .6885069
|
cons | .0125379 .00183 -30.00  0.000 .0094185 .0166904

(1) If we fit stratified models we get slightly different estimates (0.6165815 and 0.5549737) since
the models stratified by calendar period imply that all estimates are modified by calendar

period. That is, we are actually estimating the following model:

. streg i.fu##year8594 i.agegrp##year8594 year8594##sex, dist(exp)
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112. Using Poisson regression adjusting for confounders on two different time-scales

(a) The rates plotted on timescale attained age show a clear increasing trend as age increases,
which is to be expected (older persons are more likely to suffer from CHD). The rates plotted
on timescale time-since-entry have no clear pattern and are almost constant (if you have some
imagination you can see that the rates are flat).

. use

diet, clear

* Timescale: Attained age
. stset dox, id(id) fail(chd) origin(dob) entry(doe) scale(365.24)

. sts
. sts

.01 .015 .02 .025

.005

graph, hazard
graph, hazard by(hieng)

Smoothed hazard estimates

—

— ——————— e ——

40 50 60 70
analysis time

—— hieng=low ------- hieng = high

Figure 14: Diet data. Kaplan-Meier estimates of hazard rate for each energy intake level, with attained

age as time scale.
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* Timescale: Time since entry
. stset dox, id(id) fail(chd) origin(doe) enter(doe) scale(365.24)

. sts graph, hazard
. sts graph, hazard by(hieng)

Smoothed hazard estimates

.01 .012 .014 .016
1 1 1 1

.008
1

.006
1

0 5 10 15 20
analysis time

hieng=low ------- hieng = high

Figure 15: Diet data. Kaplan-Meier estimates of hazard rate for each energy intake level, with time since
entry as time scale.

(b) Patients with high energy intake have 48% less CHD rate. The underlying shape of the rates
is assumed to be constant (i.e. the baseline is flat) over time.

. poisson chd i.hieng, e(y) irr

Poisson regression Number of obs = 337
LR chi2(1) = 4.82
Prob > chi2 = 0.0282
Log likelihood = -175.0016 Pseudo R2 = 0.0136
chd | IRR Std. Err. z P>|z| [95% Conf. Intervall
hieng |
high | .5203602 .1572055 -2.16 0.031 .2878382 .9407184
_cons | .013596  .0025694 -22.74  0.000 .0093875 .0196912

In(y) | 1 (exposure)
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(¢) The effect of high energy intake is slightly confounded by bmi and job, since the point estimate
changes a little.

. gen bmi=weight/(height/100*height/100)
. poisson chd i.hieng i.job bmi, e(y) irr

Poisson regression Number of obs = 332
LR chi2(4) = 8.16
Prob > chi2 = 0.0861
Log likelihood = -168.42784 Pseudo R2 = 0.0236
chd | IRR Std. Err. z P>|z| [95% Conf. Intervall
—_— e _— _— _— —_

hieng |
high | .4868519 .1517623 -2.31 0.021 . 2642767 .8968811

|

job |
conductor | 1.579581 .6422652 1.12 0.261 .7119336 3.504649
bank | .8963158 .3315282 -0.30 0.767 .4341298 1.850557

|
bmi | 1.071483 .0521307 1.42 0.156 .9740289 1.178687
_cons | .0024302 .0030291 -4.83 0.000 .0002112 .0279646

| 1 (exposure)

1n(y)

(d) The y variable is not correct since it is kept for all split records, and contains the complete

In(\) = fo + Prhieng + Baconductor + fzbanker + S4bmi

follow-up rather than the risktime in that specific timeband.

. stset dox, id(id) fail(chd) origin(dob) enter(doe) scale(365.24)

. stsplit ageband, at(30,50,60,72) trim

. list id _tO _t ageband y in 1/10

e ettt +
| id t0 _t ageband y |
| -—= - -—= |

1. | 127  49.389443 50 30 16.79124 |
2. | 127 50 60 50 16.79124 |
3. | 127 60 66.181141 60 16.79124 |
4. | 200 47.497536 50 30 19.95893 |
5. | 200 50 60 50 19.95893 |
|- - - -—=
6. | 200 60 67.457015 60 19.95893 |
7. | 198 46.465338 50 30 19.95893 |
8. | 198 50 60 50 19.95893 |
9. | 198 60 66.424817 60 19.95893 |

10. | 222 54.605191 60 50 15.39493 |

+= -— ——— e +

The risktime variable contains the correct amount of risktime for each timeband.

. gen risktime=_t-_t0
. list id _tO _t ageband y risktime in 1/10



-+

| id t0 _t ageband y risktime |

[-==-—- --- --- --- -1
1. | 127  49.389443 50 30 16.79124 .6105574 |
2. | 127 50 60 50 16.79124 10 |
3. | 127 60 66.181141 60 16.79124 6.181141 |
4. | 200 47.497536 50 30 19.95893 2.502464 |
5. | 200 50 60 50 19.95893 10 |

[-====- --- --- --- -1
6. | 200 60  67.457015 60 19.95893  7.457015 |
7. | 198 46.465338 50 30 19.95893  3.534662 |
8. | 198 50 60 50 19.95893 10 |
9. | 198 60 66.424817 60 19.95893  6.424817 |
10. | 222 54.605191 60 50 15.39493 5.394809 |

-+

35

The event variable chd is not correct since it is kept constant for all split records, while it should
only be 1 for the last record (if the person has the event). For all other records (timebands)

for that person it should be 0.

. tab ageband chd, missing

| Failure: 1=chd, O otherwise
ageband | 0 1
___________ o
30 | 10 6 180
50 | 63 18 212
60 | 218 22 0
Total | 291 46 392
. tab ageband _d, missing
I _d
ageband | 0 1] Total
—— o S
30 | 190 6 | 196
50 | 275 18 | 293
60 | 218 22 | 240
——_——— o o
Total | 683 46 | 729
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The effect of high energy intake is somewhat confounded by age, but also confounded by job
and bmi.

. poisson _d i.hieng i.ageband, e(risktime) irr

Poisson regression Number of obs = 729
LR chi2(3) = 9.64
Prob > chi2 = 0.0218
Log likelihood = -201.70224 Pseudo R2 = 0.0234
_d | IRR Std. Err. z P>|z| [95% Conf. Intervall]
_———— _+___ _— —_— —_— —_————
hieng |
high | .5361689  .1622749 -2.06 0.039 .2962648 .9703384
[
ageband |
50 | 1.353255  .6388848 0.64 0.522 .5364372 3.413816
60 | 2.328214 1.074106 1.83 0.067 .942598 5.75068
I
_cons | .0083976  .0036279 -11.06  0.000 .003601 .0195835
In(risktime) | 1 (exposure)

. poisson _d i.hieng i.job bmi i.ageband, e(risktime) irr

Poisson regression Number of obs = 719
LR chi2(6) = 14.47
Prob > chi2 = 0.0248
Log likelihood = -194.38638 Pseudo R2 = 0.0359
_d | IRR Std. Err. z P>|z| [95% Conf. Intervall]
_____________ I —_— —_— —_— e
hieng |
high | .4901577 .1538543 -2.27 0.023 .2649442 .906812
|
job |
conductor | 1.545112 .6284217 1.07 0.285 .6962464 3.428919
bank | .8711755  .3239507 -0.37 0.711 .4203222 1.805631
|
bmi | 1.076678 .0522368 1.52 0.128 .9790126 1.184086
|
ageband |
50 | 1.710734 .8703232 1.06 0.291 .6311608 4.63687
60 | 2.927686  1.454295 2.16 0.031 1.105859 7.750847
|
_cons | .0011229 .0014748 -5.17 0.000 .0000856 .0147317
In(risktime) | 1 (exposure)

Our timescale in this model is attained age, since we have included this in our model using the
variable ageband, we have made the assumption that the underlying rate is constant within
each of the three agebands.

(e) . use diet, clear

. gen bmi=weight/(height/100*height/100)
. stset dox, id(id) fail(chd) origin(doe) enter(doe) scale(365.24)

. stsplit fuband, at(0,5,10,15,22) trim



. list id _tO _t fuband y in 1/10

e e ettt T +
| id _to t  fuband y |
[-==--- --- --- -1

1. | 127 0 5 0 16.79124 |

2. | 127 5 10 5 16.79124 |

3. | 127 10 15 10 16.79124 |

4. | 127 15 16.791699 15 16.79124 |

5. | 200 0 5 0 19.95893 |
[—==mmmmm oo --- -1

6. | 200 5 10 5 19.95893 |

7. 1 200 10 15 10 19.95893 |

8. | 200 15 19.959479 15 19.95893 |

9. | 198 0 5 0 19.95893 |

10. | 198 5 10 5 19.95893 |

. gen risktime=_t-_t0

. list id _tO _t fuband y risktime in 1/10

| id  _tO t  fuband y  risktime
[ =
1. | 127 0 5 0 16.79124 5
2. | 127 5 10 5 16.79124 5
3. | 127 10 15 10 16.79124 5
4. | 127 15 16.791699 15 16.79124 1.791699
5. | 200 0 5 0 19.95893 5
[ e
6. | 200 5 10 5 19.95893 5
7. | 200 10 15 10  19.95893 5
8. | 200 15 19.959479 16 19.95893  4.959479
9. | 198 0 5 0 19.95893 5
10. | 198 5 10 5  19.95893 5
e e
. tab fuband chd, missing
| Failure: 1=chd, O otherwise
fuband | 0 1 | Total
0 | 13 17 307 | 337
5 | 26 12 269 | 307
10 | 69 13 187 | 269
15 | 183 4 0 | 187
—_— e fomm
Total | 291 46 763 | 1,100
. tab fuband _d, missing
| _d
fuband | 0 1] Total
___________ oo — + ——
(O 320 17 | 337
5 | 295 12 | 307
10 | 256 13 | 269
15 | 183 4 | 187
___________ o
Total | 1,054 46 | 1,100
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. poisson _d i.hieng i.fuband, e(risktime) irr
Poisson regression Number of obs = 1,100
LR chi2(4) = 5.65
Prob > chi2 = 0.2270
Log likelihood = -238.76022 Pseudo R2 = 0.0117
_d | IRR  Std. Err. z P>|z]| [95% Conf. Interval]
_____________ +___ _— _— _— _—
hieng |
high | .522449 .1578565 -2.15 0.032 .288972 .9445654
|
fuband |
5 | .7916051 .2984822 -0.62 0.535 .378055 1.657533
10 | 1.1292 .4160427 0.33 0.742 .5484711 2.324811
15 | .9511141 .5285699 -0.09 0.928 .320028 2.826684
|
_cons | .0141283 .0038063 -15.82 0.000 .0083335 .0239524
In(risktime) | 1  (exposure)
. poisson _d i.hieng i.job bmi i.fuband, e(risktime) irr
Poisson regression Number of obs = 1,084
LR chi2(7) 9.14
Prob > chi2 = 0.2429
Log likelihood = -232.10988 Pseudo R2 = 0.0193
_d | IRR Std. Err z P>|z]| [95\% Conf. Intervall
_____________ I — B
hieng |
high | .4895596 .1526123 -2.29 0.022 .2657402 .9018907
|
job |
conductor | 1.584205 .6439641 1.13 0.258 . 7141775 3.514121
bank | .8711819 .3246359 -0.37 0.711 .4196801 1.80842
|
bmi | 1.071175 .0521887 1.41 0.158 .9736194 1.178506
|
fuband |
5 | .8451327 .3227979 -0.44 0.660 .399769 1.786655
10 | 1.245226 .4667926 0.59 0.559 .5972581 2.596179
15 | 1.142386 .6449991 0.24 0.814 .3777621 3.454675
|
_cons | .0024216 .0030584 -4.77  0.000 .0002038 .0287817
In(risktime) | 1 (exposure)

There seems to be no confounding by time-since-entry. We can see this by comparing the
models where we do not adjust for time-since-entry (IRR for hieng=0.52, see and the
model where we adjust for time-since-entry (IRR for hieng=0.52). We can also see this by
considering the graphs at the beginning of the exercise where we concluded that the rates were
constant over time-since-entry. There is confounding by bmi and job.

Using streg will give you the same results as using poisson. The advantage using streg is

that this command understands and respects the internal st variables (\_st, \_t, \_t0, and

\_d).



120. Modelling cause-specific mortality using Cox regression

. stcox i.year8594

39

Cox regression -- Breslow method for ties
No. of subjects = 5,318 Number of obs = 5,318
No. of failures = 960
Time at risk = 388520
LR chi2(1) = 14.78

Log likelihood =  -7893.0592 Prob > chi2 = 0.0001

_t | Haz. Ratio Std. Err. z P>zl [95% Conf. Intervall]
_________________ o

year8594 |

Diagnosed 85-94 | .7T768217 .0511092 -3.84 0.000 .6828393 .8837392

(a)

Patients diagnosed during 1985-94 experience only 77.7% of the cancer mortality experienced
by those diagnosed 1975-84. That is, mortality due to skin melanoma has decreased by
22.3% in the latter period compared to the earlier period. This estimate is not adjusted for
any potential confounders except time. There is strong evidence of a statistically significant
difference in survival between the two periods (based on the test statistic or the fact that the
CI for the hazard ratio does not contain 1).

The three test statistics are

log-rank 14.85 (from sts test year8594)

Wald —3.842 = 14.75 (from the z test above)

Likelihood ratio 14.78 (from the output above)

The three test statistics are very similar. We would expect each of these test statistics to be
similar since they each test the same null hypothesis that survival is independent of calendar
period. The null hypothesis in each case is that survival depends on calendar period in such
a way that the hazard ratio between the two periods is constant over follow-up time (i.e.
proportional hazards).

. stcox i.sex i.year8594 i.agegrp

Cox regression --

Breslow method for ties

No. of subjects = 5,318 Number of obs = 5,318
No. of failures = 960
Time at risk 388520
LR chi2(5) = 211.94
Log likelihood = =7794.4811 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. z P>z [95% Conf. Intervall]
sex |
Female | .5888144 .0385379 -8.09 0.000 .5179256 .6694059
I
year8594 |
Diagnosed 85-94 | .7168836 .0474446 -5.03 0.000 .6296723 .8161739
|
agegrp |
45-59 | 1.326397 .1249113 3.00 0.003 1.102841 1.59527
60-74 | 1.857323 .1687866 6.81 0.000 1.554295 2.21943
75+ | 3.372652 .3522268 11.64 0.000 2.748371 4.138736
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ii.

EXERCISE SOLUTIONS

For patients of the same sex diagnosed in the same calendar period, those aged 60-74 at
diagnosis have an estimated 86% higher risk of death due to skin melanoma than those
aged 0—44 at diagnosis. The difference is statistically significant.

It is worth noting, however, that the analysis is adjusted for the fact that mortality may
depend on time since diagnosis (since this is the underlying time scale) and the mortality
ratio between the two age groups is assumed to be the same at each point during the
follow-up (i.e., proportional hazard).

Age (modelled as a categorical variable with 4 levels) is highly significant in the model.

. test l.agegrp 2.agegrp 3.agegrp

(1) 1.agegrp =0
(2) 2.agegrp = 0
(3) 3.agegrp =0
chi2( 3) = 153.78
Prob > chi2 = 0.0000

(d) Age (modelled as a categorical variable with 4 levels) is highly significant in the model. The
Wald test is an approximation to the LR test and we would expect the two to be similar (which

()

they are).

. lrtest A

Likelihood-ratio test LR chi2(3) = 142.85
(Assumption: . nested in A) Prob > chi2 = 0.0000

i.

ii.

Both models adjust for the same factors. When fitting the Poisson regression model we
split time since diagnosis into annual intervals and explicitly estimated the effect of this
factor in the model. The Cox model does not estimate the effect of ‘time’ but the other
estimates are adjusted for ‘time’.

Since the two models are conceptually similar we would expect the parameter estimates
to be similar, which they are.

. stcox i.year8594 i.sex i.agegrp
. est store Cox

. stsplit fu, at(0(12)120) trim

. streg i.fu i.year8594 i.sex i.agegrp, dist(exp)
. est store Poisson

. est table Cox Poisson, eform equations(1)
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Variable | Cox Poisson
year8594 |
Diagnosed.. | .71688362 .72241051
|
sex |
Female | .58881445 .58754651
|
agegrp |
45-59 | 1.3263971 1.3277947
60-74 | 1.8573227 1.8623763
75+ | 3.3726522 3.4002869
|
fu |
12 | 3.5546847
24 | 3.6934975
36 | 2.9321966
48 | 2.4477533
60 | 2.2562326
72 | 1.7974533
84 | 1.2886666
96 | 1.4394596
108 | .79615726
|
cons | .00105764

iii. Yes, both models assume ‘proportional hazards’. The proportional hazards assumption
implies that the risk ratios for sex, period, and age are constant across all levels of follow-
up time. In other words, the assumption is that there is no effect modification by follow-up
time. This assumption is implicit in Poisson regression (as it is in logistic regression) where
it is assumed that estimated risk ratios are constant across all combination of the other
covariates. We can, of course, relax this assumption by fitting interaction terms.

In(A) = Bo + Bifui_o + Bofus_z + Bafuz_y + Bafuy_s + Bsfus_6 + Befus—7 + Frfur_g + Befug_o+
Bofug_10 + Broagel + Bi1age2 + Broage3 + Przyear8b94 + [Srasex
ii.
Model (a):In(A(¢)) = In(Ao(¢)) + B1year8594
Model (¢): In(A(t)) = In(Ao(t)) + Bryear8594 + fasex + Szagel + Siage2 + Ssage3

The intercept in the Poisson regression model Sy is the log rate in the first timeband of
followup (0-1 year since diagnosis), in the reference level of all variables X, i.e. males
diagnosed 1975-84 in agegroup 0. The “intercept” in the Cox models (a) and (c) is the
log baseline rateln(\g(¢)) , which is the rate among the persons at the reference level of all
variables X, i.e. males diagnosed 1975-84 in agegroup 0. This intercept is not estimated,
so it is not a parameter in the model. This Cox baseline rate corresponds, conceptually, to
the intercept plus the linear predictor for fu; o, ...,fug_19 in the Poisson model, 81fu;_o+
Pafug_3 + Bsfug_4 + Bafus_s5 + Bsfus_6 + Befus—7 + Briur—s + Befug g + Bofug—10.
iii. Rate of males diagnosed 1985-94 in agegroup 2:

A(t|sex = 0, year8594 = 1,age2 = 1) = Ao(t) exp(B1*1+B2%0+ B30+ L4x1+85%0) = A\o(t) exp(B1+54)
Rate of females diagnosed 1985-94 in agegroup 2:

A(t|sex = 1, year8594 = 1,age2 = 1) = \o(t) exp(B1#1+Box1+L3x0+84x1+85%0) = Ao (t) exp(B1+P2+54)
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Hazard ratio females to males diagnosed 1985-94 in agegroup2:

HR = (Ao(t) exp(B1 + B2 + B1))/(Mo(t) exp(B1 + B1)) = exp(B2)

Comment: The hazard ratio of females to males diagnosed 1985-94 in agegroup 2 is a
constant, and so does not vary over time t. This is the definition of proportional hazards.
Hence, the rates of females and males are assumed to be proportional over time in this
model specification.

(g) . est table Cox Poisson, eform equations(1)

Hazard ratios and standard errors for Cox and Poisson models

Variable | Cox Poisson
_____________ ——— — I
sex | 0.588814 0.587547
| 0.038538 0.038456
year8594 | 0.716884 0.722411
| 0.047445 0.047813
|
agegrp |
45-59 | 1.326397 1.327795
| 0.124911 0.125042
60-74 | 1.857323 1.862376
| 0.168787 0.169244
75+ | 3.372652 3.400287
| 0.352227 0.355140

legend: Db/se

The table shows hazard ratios and standard errors for Cox regression and Poisson regression
with annual intervals. We see that the estimates are very similar.

(h) . est table Cox Poisson_fine Poisson, eform equations(1)

Hazard ratios and standard errors for various models

Variable | Cox Poisson_fine Poisson
_____________ o
sex | 0.588814 0.588814 0.587547
| 0.038538 0.038538 0.038456
year8594 | 0.716884 0.716884 0.722411
| 0.047445 0.047445 0.047813
|
agegrp |
45-59 | 1.326397 1.326397 1.327795
| 0.124911 0.124911 0.125042
60-74 | 1.857323 1.857323 1.862376
| 0.168787 0.168787 0.169244
75+ | 3.372652 3.372652 3.400287
| 0.352227 0.352227 0.355140

legend: b/se

The table shows hazard ratios and standard errors for Cox regression, Poisson regression after
splitting at each failure time (Poisson_fine), and Poisson regression with annual intervals.
Both the estimates and standard errors are identical for the first two.

(i) No written solutions for this part.
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121. Examining the proportional hazards hypothesis

(a) If we look at the hazard curves, at their peak the ratio is approximately 0.038/0.048 = 0.79.
The ratio is similar at other follow-up times.

. sts graph, hazard by(year8594)

Smoothed hazard estimates
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Figure 16: Localised skin melanoma. Plot of the estimated hazard function for each calendar period of
diagnosis.

(b) There is no strong evidence against an assumption of proportional hazards since we see (close
to) parallel curves when plotting the instantaneous cause-specific hazard on the log scale.

. sts graph, hazard by(year8594) yscale(log)

Smoothed hazard estimates
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Figure 17: Localised skin melanoma. Plot of the estimated hazard function for each calendar period of
diagnosis using a log scale for the y axis.

(c¢) If the proportional hazards assumption is appropriate then we should see parallel lines in
Figure This looks okay, we shouldn’t put too much weight on the fact that the curves
cross early in the follow-up since there are so few deaths there. The difference between the
two log-cumulative hazard curves is similar during the part of the follow-up where we have the
most information (most deaths). Note that these curves are not based on the estimated Cox
model (i.e., they are unadjusted).
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. stphplot, by(year8594)

—=e—— Diagnosed 1975-84
——&—— Diagnosed 1985-94

4 6
L L

=In[-In(Survival Probability)]
2
1

% 2 il 0 1 2
In(analysis time)

Figure 18: Localised skin melanoma. Plot of the log cumulative hazard function for each calendar period
of diagnosis. Each plot symbol represents an event time. Note that the z axis is the natural logarithm
of time in years, so a value of 0 corresponds to 1 year.

(d) The estimated hazard ratio from the Cox model is 0.78 which is similar (as it should be) to
the estimate made by looking at the hazard function plot.

(e) The command estat phtest, plot(l.year8594) plots the scaled Schoenfeld residuals for
the effect of period. Under proportional hazards, the smoother will be a horizontal line. The
line is not, however, perfectly horizontal; it appears that the effect of period differs over the
follow-up.

Test of PH Assumption
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Figure 19: Localised skin melanoma. Plot of the scaled Schoenfeld residuals for calendar period 1985-94.
The smooth line shows the estimated hazard ratio as a function of time.

(f) No written solutions for this part.

(g) Tt seems that there is evidence of non-proportional hazards by age (particularly for the com-
parison of the oldest to youngest) but not for calendar period. The plot of Schoenfeld residuals
suggested non-proportionality for period but this was not statistically significant.

. stcox i.sex i.year8594 i.agegrp
. estat phtest, detail
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Test of proportional-hazards assumption

Time: Time

| rho chi2 df Prob>chi?2
1b.sex | . . 1 .
2.sex | 0.04705 2.09 1 0.1482
Ob.year8594 | . . 1
1.year8594 | 0.04878 2.28 1 0.1308
Ob.agegrp | . . 1 .
1.agegrp | -0.04431 1.89 1 0.1690
2.agegrp | -0.08247 6.48 1 0.0109
3.agegrp | -0.12450 14.19 1 0.0002
global test | 18.29 5 0.0026

. tab(agegrp), gen(agegrp)
. Stcox i.sex i.year8594 agegrp2 agegrp3 agegrp4, tvc(agegrp2 agegrp3 agegrp4) texp(_t>=2)

Cox regression -- Breslow method for ties
No. of subjects = 5,318 Number of obs = 5,318
No. of failures = 960
Time at risk = 32376.66667
LR chi2(8) = 221.75
Log likelihood = -7789.5752 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. z P>zl [95% Conf. Intervall]
_________________ o
main |
sex |
Female | .5906795 .0386481 -8.05 0.000 .5195865 .6714998
|
year8594 |
Diagnosed 85-94 | .7153885 .0473797 -5.06 0.000 .6283005 .8145476
agegrp2 | 1.698848 .3335545 2.70 0.007 1.156187 2.496208
agegrp3 | 2.457673 .4605845 4.80 0.000 1.702171 3.548502
agegrpd | 5.399496 1.035355 8.79 0.000 3.70796 7.862694
tve |
agegrp2 | .7257338 .1624357 -1.43 0.1562 .4680143 1.125371
agegrp3 | .693004 .1487645 -1.71 0.088 .4550003 1.055504
agegrp4 | .4931264 .1144418 -3.05 0.002 .3129079 7771414

Note: variables in tvc equation interacted with _t>=2

The hazard ratios for age in the top panel are for the first two years subsequent to diagnosis.
To obtain the hazard ratios for the period two years or more following diagnosis we multiply
the hazard ratios in the top and bottom panel. That is, during the first two years following
diagnosis patients aged 75 years or more at diagnosis have 5.4 times higher cancer-specific
mortality than patients aged 0—44 at diagnosis. During the period two years or more following
diagnosis the corresponding hazard ratio is 5.4 x 0.49 = 2.66.

Using stsplit to split on time will give you the same results as above. We see that the
age*follow up interaction is statistically significant.
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stsplit fuband, at(0,2)
list id _t0 _t fu in 1/10

stcox i.sex i.year8594 i.agegrp##i.fuband
. testparm i.agegrp#i.fuband
QD

2
3

1.agegrp#2.fuband = 0
2.agegrp#2.fuband = 0
3.agegrp#2.fuband = 0

chi2( 3)
Prob > chi2

9.55
0.0228

(i) . stcox i.sex i.year8594 i.fuband i.fuband#i.agegrp

EXERCISE SOLUTIONS

Cox regression -- Breslow method for ties
No. of subjects = 5,318 Number of obs = 9,856
No. of failures = 960
Time at risk = 32376.66667
LR chi2(8) = 221.75
Log likelihood =  -7789.5752 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err z P>z [95% Conf. Intervall]
sex |
Female | .5906795  .0386481 -8.05 0.000 .5195865 .6714998
|
year8594 |
Diagnosed 85-94 | .7153885  .0473797 -5.06 0.000 .6283005 .8145476
2.fuband | 7.415862
|
fuband#agegrp |
O#45-59 | 1.698848 .3335545 2.70 0.007 1.156187 2.496208
o#60-74 | 2.457673  .4605845 4.80 0.000 1.702171 3.548502
o#75+ | 5.399496  1.035355 8.79  0.000 3.70796 7.862694
2#45-59 | 1.232911 .1328384 1.94 0.052 .9982062 1.522802
2#60-74 | 1.703178  .1784726 5.08 0.000 1.386961 2.091489
2#75+ | 2.662634 .350343 7.44 0.000 2.05737 3.445963
0-2 years | 2+ years
Agegrp0 1.00 1.00
Agegrpl 1.70 1.23
Agegrp?2 2.46 1.70
Agegrp3 5.40 2.66
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A(t) = Ao(t) exp(Brsex+Payear8594+Bsagel+Siage2+Psaged—+ fsagelxfus+Prage, xfus+ fgages xfug)

0-2 years 24 years

Agegrp0 Ao(t) Ao(t)

Agegrpl | Ao(t) exp(B3) | Ao(t) exp(Bs) exp|Bs)

Agegrp2 | Ao(t) exp(Ba) | Ao(t) exp(Ba) exp(Sr)

Agegrp3 | Mo(t) exp(Bs) | Ao(t) exp(Bs) exp(Ps)
ii. Hazard ratio comparing agegrp3 to agegrp0, during 0-2y of followup:

HR = (Ao(t) exp(B5))/(Ao(t)) = exp(Bs)
iii. Hazard ratio comparing agegrp3 to agegrp0, during 2+ years of followup:
HR = (Ao(t) exp(Bs) exp(Bs))/(Ao(t)) = exp(Bs) exp(fBs)

(k) Splitting time since diagnosis into yearly intervals and estimating the effect of age separate for

0-2 years and 2+ years after diagnosis gives similar estimates to those obtained from the Cox
model.
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123. Cox model for cause-specific mortality

(a)

. stcox i.sex

Cox regression --—

Breslow method for ties

EXERCISE SOLUTIONS

No. of subjects = 7,775 Number of obs = 7,775
No. of failures = 1,913
Time at risk = 615236.5

LR chi2(1) = 103.25

Log likelihood = -16342.555 Prob > chi2 = 0.0000

_t | Haz. Ratio Std. Err P>|z| [95% Conf. Intervall]

_____________ e _— _— _— U,

sex |
Female | .6273066 .0289338 -10.11 0.000 .573085 .6866581

We see, without adjusting for potential confounders, that females have a 38% lower mortality

than males.

. stcox i.sex i.agegrp i.stage i.subsite i.year8594

Cox regression --

No.
No.
Time at risk =

of subjects =
of failures =

Log likelihood =

sex
Female

agegrp

45-59

60-74
75+

stage
Localised
Regional
Distant

subsite
Trunk
Limbs
Multiple and NOS

year8594

Breslow method for ties

7,775 Number of obs = 7,775
1,913
615236.5
LR chi2(11) = 1835.82
-15476.269 Prob > chi2 = 0.0000
| Haz. Ratio Std. Err z P>|z| [95% Conf. Intervall
e _— __ N
|
| . 7490676 .036445 -5.94 0.000 .6809368 .8240153
|
|
| 1.268542 .0855596 3.563 0.000 1.111459 1.447824
| 1.730767 .1126805 8.43 0.000 1.523427 1.966326
| 2.785848 .2128337 13.41 0.000 2.398431 3.235845
|
|
| 1.038328 .0713262 0.55 0.584 .9075334 1.187972
| 4.771515 .4363494 17.09 0.000 3.988549 5.70818
| 13.48664 1.097917 31.96 0.000 11.49766 15.8197
|
|
| 1.393153 .0984179 4.69 0.000 1.213016 1.600041
| 1.032021 .0767263 0.42 0.672 .8920829 1.19391
| 1.305318 .133562 2.60 0.009 1.06812 1.59519
|
|
| . 7867739 .0376881 -5.01 0.000 .7162681 .8642199

Diagnosed 85-94

After adjusting for a range of potential confounders we see that the estimated difference in
cancer-specific mortality between males and females has decreased slightly but there is still
quite a large difference.
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(¢) Let’s first estimate the effect of gender for each age group without adjusting for confounders.

. stcox i.agegrp i.sex#i.agegrp

Cox regression -- Breslow method for ties
No. of subjects = 7775 Number of obs
No. of failures = 1913
Time at risk = 615236.5
LR chi2(7)
Log likelihood =  -16228.639 Prob > chi2
_t | Haz. Ratio Std. Err z P>|z| [95% Con
agegrp |
1| 1.197101 .1017692 2.12 0.034 1.013369
2 | 1.497299 .1267028 4.77  0.000 1.268466
3 | 2.322161 .2401309 8.15 0.000 1.896142
[
sext#tagegrp |
20 | .4578165 .0478157 -7.48 0.000 .3730692
21 | .5526258 .0504729 -6.49  0.000 .4620494
22 | .7132982 .0565997 -4.26  0.000 .6105607
23 | .6750958 .0713516 -3.72 0.000 .5487834

7775

= 331.08
= 0.0000

1.414145
1.767412
2.843895

.5618151
.660958
.833323

.8304813

. test 2.sex#0.agegrp = 2.sex#l.agegrp =

(1) 2.sex#0b.agegrp - 2.sex#l.agegrp
( 2) 2.sex#0b.agegrp - 2.sex#2.agegrp
( 3) 2.sex#0b.agegrp - 2.sex#3.agegrp

chi2(
Prob > ¢

3)
hi2

13.50

0.0037

2.sex#2.agegrp = 2.sex#3.agegrp

o

We see that there is some evidence that the survival advantage experienced by females depends
on age. The hazard ratio for males/females in the youngest age group is 0.46, while in the
highest age group the hazard ratio is 0.68. There is evidence that the hazard ratios for gender
differ across the age groups (p=0.0037). However, after adjusting for stage, subsite, and period
there is no longer evidence of an interaction. See the following.
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. stcox i.year8594 i.subsite i.stage i.agegrp i.sex#i.agegrp

Cox regression -- Breslow method for ties
No. of subjects = 7,775 Number of obs = 7,775
No. of failures = 1,913
Time at risk = 615236.5
LR chi2(14) = 1840.42
Log likelihood =  -15473.971 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall
__________________ fom——— —_— —_— _—
year8594 |
Diagnosed 85-94 | .7868595  .0376845 -5.01  0.000 .7163599 .8642973
|
subsite |
Trunk | 1.401988  .0992064 4.78 0.000 1.220428 1.610558
Limbs | 1.039415 .0773326 0.52 0.603 .8983792 1.202593
Multiple and NOS | 1.315538  .1349198 2.67 0.007 1.075983 1.608428
|
stage |
Localised | 1.036942  .0712433 0.53 0.598 .9063011 1.186414
Regional | 4.702828  .4312718 16.88  0.000 3.929161 5.628833
Distant | 13.38869 1.091144 31.83 0.000 11.41215 15.70757
|
agegrp |
45-59 | 1.188947 .1014449 2.03 0.043 1.006855 1.405367
60-74 | 1.5508  .1318113 5.16 0.000 1.312827 1.831911
75+ | 2.485421 .2605605 8.68 0.000 2.023782 3.052363
|
sext#tagegrp |
Female#0-44 | .6251314  .0662091 -4.44  0.000 .5079472 .7693502
Female#45-59 | .7300673 .0678894 -3.38 0.001 .608428 .8760252
Female#60-74 | .8120201 .0653462 -2.59 0.010 .6935337 .9507494
Female#75+ | .8068979 .086154 -2.01 0.044 .654537 9947249

. test 2.sex#0.agegrp = 2.sex#l.agegrp = 2.sex#2.agegrp = 2.sex#3.agegrp

(1) 2.sex#0b.agegrp - 2.sex#l.agegrp = 0
( 2) 2.sex#0b.agegrp - 2.sex#2.agegrp = 0
( 3) 2.sex#0b.agegrp - 2.sex#3.agegrp = 0
chi2( 3) = 4.56
Prob > chi2 = 0.2067

That is, there is not strong evidence in support of the hypothesis (although some may consider
that there is weak evidence).
(d) After having fitted a main effects model we can check the proportional hazards assumption by

fitting a regression line through the model-based Schoenfeld residulas and check if the slope is
statistically different from zero.

stcox i.sex i.year8594 i.agegrp i.subsite i.stage
estat phtest, detail
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Test of proportional-hazards assumption

Time: Time

| rho chi2 df Prob>chi2
____________ e
1b.sex | . . 1 .
2.sex | 0.03157 1.93 1 0.1644
Ob.year8594 | . . 1 .
1.year8594 | -0.00805 0.13 1 0.7229
Ob.agegrp | . . 1 .
1.agegrp | -0.00847 0.14 1 0.7096
2.agegrp | -0.00901 0.16 1 0.6918
3.agegrp | -0.02301 1.04 1 0.3078
1b.subsite | . . 1 .
2.subsite | 0.01695 0.58 1 0.4477
3.subsite | 0.00398 0.03 1 0.8587
4.subsite | -0.00694 0.09 1 0.7641
Ob.stage | . . 1 .
1.stage | 0.08211 12.85 1 0.0003
2.stage | -0.01781 0.60 1 0.4373
3.stage | -0.06603 7.95 1 0.0048
____________ e — —
global test | 82.21 11 0.0000

There is strong evidence that the proportional hazard assumption is not satisfied for the effect
of stage. It seems reasonable that the effect is higher in the first 2 years after diagnosis, so
let’s fit a model where the HR for stage differs before and after 2 years. Having accounted for
the time-dependent effect of stage, there is still no evidence that the effect of sex is modified
by age at diagnosis.

. stsplit timeband, at(0,2,100)
(6,100 observations (episodes) created)

. stcox i.sex#i.agegrp i.agegrp i.year8594 i.subsite i.stage##i.timeband

Failure _d: status==
Analysis time _t: surv_mm/12

ID variable: id

Iteration O: log likelihood = -16394.181
Iteration 1: log likelihood = -16061.47
Iteration 2: log likelihood = -15461.021
Iteration 3: log likelihood = -15410.585
Iteration 4: log likelihood = -15409.514

Iteration 5: log likelihood = -15409.514
Refining estimates:
Iteration O: log likelihood = -15409.514

Cox regression with Breslow method for ties

No. of subjects = 7,775 Number of obs = 13,875
No. of failures = 1,913
Time at risk = 51,269.7083
LR chi2(17) = 1969.33
Log likelihood = -15409.514 Prob > chi2 = 0.0000
_t | Haz. ratio Std. err. z P>zl [95% conf. intervall]

__________________ +——— —_ —_ —_ ————————
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EXERCISE SOLUTIONS

sex#agegrp |
Female#0-44 | .6151956 .0651456 -4.59 0.000 .4998917 . 7570952
Female#45-59 | . 7381433 .068742 -3.26 0.001 .6149924 .885955
Female#60-74 | .7995144 .0643722 -2.78 0.005 .6827984 .9361815
Female#75+ | .8021172 .0855874 -2.07 0.039 .6507483 .9886956

|

agegrp |
45-59 | 1.172296 .1000479 1.86 0.063 .9917286 1.385741
60-74 | 1.551673 .1318516 5.17 0.000 1.313622 1.832864
75+ | 2.447432 .2566963 8.53 0.000 1.99266 3.005993

|

year8594 |
Diagnosed 85-94 | .7901069 .0377861 -4.93 0.000 .7194124 .8677482

|

subsite |
Trunk | 1.363457 .0963669 4.39 0.000 1.18708 1.566041
Limbs | 1.01201 .0752092 0.16 0.872 .8748355 1.170694
Multiple and NOS | 1.284234 .1318631 2.44 0.015 1.050132 1.570522

|

stage |
Localised | .6945836 .0735206 -3.44 0.001 .5644509 .8547179
Regional | 4.786207 .6028838 12.43 0.000 3.739141 6.126482
Distant | 15.78975 1.66382 26.19 0.000 12.84344 19.41196

|

2.timeband | 3.377186

|

stage#timeband |
Localised#2 | 1.900092 .2646924 4.61 0.000 1.446099 2.496613
Regional#2 | .9275423 .1698571 -0.41 0.681 .6478233 1.328039
Distant#2 | .4055014 .074699 -4.90 0.000 .2826111 .5818292

. test 2.sex#0.agegrp = 2.sex#l.agegrp = 2.sex#2.agegrp = 2.sex#3.agegrp

(1) 2.sex#0b.agegrp - 2.sex#l.agegrp = 0
( 2) 2.sex#0b.agegrp - 2.sex#2.agegrp = 0
( 3) 2.sex#0b.agegrp - 2.sex#3.agegrp = 0
chi2( 3) = 4.61
Prob > chi2 = 0.2029

If you have time you can check for additional interaction terms between the remaining covari-
ates, i.e. between age at diagnosis and stage.

()
Model in (a):A(t) = Ao(t) exp(Ssex)

Model in (b):A(t) = Ao(t) exp(Bisex + Paage; + Pzage, + Laages + Bsstage; + Bestage, + Srstages
+3ssubsite; + Bgsubsites + Bigsubsites + [£11year8594)

Model in (c):A(t) = Ao(t) exp(Brsex + Paage, + Psage, + faages + Bsstage; + Pestage, + Brstages
+Bgsubsite; + Bgsubsites + B1gsubsites + B11year8594

+[12sex * age; + P138ex * age, + [S145€X * ages)

i. Rate for females in agegroup3 while all other variables is at reference level:

A(t) = Xo(t) exp(B1 + Ba + P14)



ii. Rate for males in agegroup3 while all other variables is at reference level:

A(t) = Ao(t) exp(Ba)

Hazard ratio females to males:

HR = (Ao(t) exp(B1 + Ba + B1a))/(Ao(t) exp(Ba)) = exp(B1 + P1a)

93
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124. Modelling the diet data using Cox regression

(a)

. poisson chd i.hieng, e(y) irr

EXERCISE SOLUTIONS

Poisson regression Number of obs = 337
LR chi2(1) = 4.82
Prob > chi2 = 0.0282
Log likelihood = -175.0016 Pseudo R2 = 0.0136
chd | IRR Std. Err z P>|z]| [95% Conf. Interval]
_____________ o
hieng |
high | 5203602  .1572055 -2.16 0.031 .2878382 .9407184
_cons | .013596  .0025694 -22.74  0.000 .0093875 .0196912
In(y) | 1 (exposure)
. stset dox, id(id) fail(chd) enter(doe) origin(doe) scale(365.25)
. stcox i.hieng
Cox regression -- no ties
No. of subjects = 337 Number of obs = 337
No. of failures = 46
Time at risk = 4603.794765
LR chi2(1) = 4.73
Log likelihood =  -253.32253 Prob > chi2 = 0.0296
t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall
_____________ I —_— —_— —_— _—
hieng |
high | 5233587 .15814 -2.14  0.032 .2894658 .9462409

These two models are conceptually different since the Cox model adjusts for ‘time’ even though
this is not explicit in the stcox command. In this example, ‘time’ refers to ‘time on study’
(time since entry) which we do not expect to be a strong confounder. That is, we would expect
the estimates of the effect of high energy to be similar for the two models, which they are.

If we use a different timescale then this amounts to adjusting for a different factor. As such,
we would not expect the estimates to be identical. Attained age, unlike time since entry, is
expected to be a confounder but we see that it is not a strong confounder.

. stset dox, id(id) fail(chd) origin(dob) enter(doe) scale(365.24)

. stcox i.hieng

Cox regression --

Breslow method for ties

No. of subjects = 337 Number of obs = 337
No. of failures = 46
Time at risk = 4603.794765

LR chi2(1) = 4.20

Log likelihood =  -234.78217 Prob > chi2 = 0.0405

_t | Haz. Ratio Std. Err. z P>zl [95% Conf. Intervall]

_____________ 4 — _— e — —_

hieng |
high | 5426351 .1643032 -2.02 0.043 .2997606 .9822933




i.

ii.

95

Poisson model (a):A = exp(Bp + S1hieng)
Cox model (a):A\(t) = Ao(t) exp(B1hieng), where t is time-since-diagnosis

The Poisson model in (a) is not adjusting for the timescale time-since-diagnosis, but
estimates the effect of high versus low energy for overall (averge) rates over followup.
Thus, the £; from this Poisson model may be confounded by time-since-diagnosis.

The Cox model in (a) is adjusting for the timescale time-since-diagnosis automatically via
the baseline hazard. Hence, the (§; is the effect of high versus low energy intake at each
point in time across followup.

Cox model (b):A(tage) = Ao(tage) exp(B1hieng), where .4 is attained age.

The Cox models look similar in (a) and (b), since they only include one parameter (i,
but they are completely different since they timescales are different. In Cox model (a) the
(1 is adjusted for time-since-diagnosis, i.e. the [y is the effect of high versus low energy
intake adjusted for time-since-diagnosis. While in Cox model (b), the 3 is adjusted for
age, i.e. the B is the effect of high versus low energy intake adjusted for attained age.
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EXERCISE SOLUTIONS

125. Estimating the effect of a time-varying exposure

(a)

. use brv, clear
. list id sex doe dosp dox fail if couple==
S - -— - -———+
| id  sex doe dosp dox  fail |
| -————- --- --- --- -1
168. | 60 1 20jan1981  31dec1981  03augl981 1]
384. | 63 2 20jan1981  03augl981  31dec1981 1]
o -— -— -— —-—+
list id sex doe dosp dox fail if couple==
e -— -— -— —-——+
| id sex doe dosp dox  fail |
[ == I
12. | 156 1 20jan1981  23nov1988 01jan1991 0 |
300. | 220 2 20jan1981 01jan2000 23nov1988 1|
e e e +
list id sex doe dosp dox fail if couple==19
e +
| id  sex doe dosp dox  fail |
|- - - - I
167. | 2122 1 06may1981 01jan2000 01jan1991 01
298. | 2128 2 06may1981  01jan2000 01jan1991 0 |
e e L e Lt -—- e +
. stset dox, fail(fail) origin(dob) entry(doe) scale(365.24) id(id) noshow
id: id
failure event: fail != 0 & fail < .
obs. time interval: (dox[_n-1], dox]
enter on or after: time doe
exit on or before: failure
t for analysis: (time-origin)/365.24
origin: time dob
399 total obs.
0 exclusions
399 obs. remaining, representing
399 subjects
278 failures in single failure-per-subject data
2435.708 total analysis time at risk, at risk from t = 0
earliest observed entry t = 75.13963
last observed exit t = 96.50641

. strate sex, per(1000)

Estimated rates (per 1000) and lower/upper bounds of 95%

(399 records included in the analysis)

confidence intervals

et -—- e +
| sex D Y Rate Lower Upper |
I- - - iy

| 1 181 1.3405 135.022 116.717 156.198 |
| 2 97 1.0952 88.569 72.587 108.071 |
+- -—- -—- e +




i. The timescale is attained age, which would seem to be a reasonable choice.

ii. Males have the higher mortality which is to be expected.
iii. Age could potentially be a confounder.
. tabstat _tO, by(sex)

Summary for variables: _tO
by categories of: sex (1=M, 2=F)

sex | mean
_________ e
1 | 79.06936

2 | 78.6578
_________ e
Total | 78.90123

Males are slightly older at entry (although we haven’t studied pairwise differences).

. streg sex, dist(exp) nolog

Exponential regression -- log relative-hazard form
No. of subjects = 399 Number of obs = 399
No. of failures = 278
Time at risk = 2435.641342
LR chi2(1) = 11.64
Log likelihood = 355.79411 Prob > chi2 = 0.0006
_t | Haz. Ratio Std. Err. z P>|z| [957% Conf. Interval]
____+ ________________________________________________________________
sex | .6559621 .0825422 -3.35 0.001 .5125885 .839438
. stsplit brv, after(time=dosp) at(0)
. recode brv -1=0 0=1
(brv: 555 changes made)
. streg brv, distribution(exponential) nolog
Exponential regression -- log relative-hazard form
No. of subjects = 399 Number of obs = 555
No. of failures = 278
Time at risk = 2435.641342
LR chi2(1) = 0.81
Log likelihood = 350.37937 Prob > chi2 = 0.3686
_t | Haz. Ratio Std. Err. z P>zl [95% Conf. Interval]
brv | 1.127154 .148775 0.91 0.364 .870225 1.459939

o7
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. streg brv if sex==1, nolog
Exponential regression -- log relative-hazard form
No. of subjects = 236 Number of obs = 295
No. of failures = 181
Time at risk = 1340.4846
LR chi2(1) = 0.00
Log likelihood = 258.40461 Prob > chi2 = 0.9548
_t | Haz. Ratio  Std. Err. z P>|z| [95% Conf. Interval]
brv | 1.010863 .1923683 0.06 0.955 .6961579 1.467834
. streg brv if sex==2, nolog
Exponential regression -- log relative-hazard form
No. of subjects = 163 Number of obs = 260
No. of failures = 97
Time at risk = 1095.156742
LR chi2(1) = 5.62
Log likelihood = 100.20223 Prob > chi2 = 0.0177
_t | Haz. Ratio Std. Err. z P>zl [95% Conf. Intervall]
____+ ____________________ —_——— ——— = e o . e
brv | 1.624613 .3300669 2.39 0.017 1.090974 2.419277

Now we create indicator variables (brv_m and brv_f) to allow us to estimate the effect of
bereavement separately for each sex.

. streg i.sex i.brv#i.sex, dist(exp)

Iteration O: log likelihood = 349.97514
Iteration 1: log likelihood = 358.42347
Iteration 2: log likelihood = 358.60677
Iteration 3: log likelihood = 358.60684
Iteration 4: log likelihood = 358.60684
Exponential regression -- log relative-hazard form
No. of subjects = 399 Number of obs = 555
No. of failures = 278
Time at risk = 2435.708028
LR chi2(3) = 17.26
Log likelihood = 358.60684 Prob > chi2 = 0.0006
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall
_____________ +___ _— _— _— _——
2.sex | .5348431 .087562 -3.82 0.000 .3880357 .737193
|
brv#sex |
11 | 1.010863 .1923683 0.06 0.955 .6961579 1.467834
12 | 1.624613 .3300669 2.39 0.017 1.090974 2.419277




(f)

. stsplit age, at(70(5)100)

(481 observations (episodes) created)

. strate age

Estimated rates and lower/upper bounds of 95% confidence intervals
(1036 records included in the analysis)

+- —_

| age D Y Rate Lower Upper |
I- -== -== mmmmmmm—m—m—— - I
| 75 45 703.6124 0.063956 0.047752 0.085658 |
| 80 123 1.2e+03  0.103825 0.087007 0.123895 |
| 85 95 490.0214 0.193869 0.158554 0.237050 |
| 90 12 55.0904 0.217824 0.123704 0.383554 |
| 95 3 2.2999 1.304429 0.420706 4.044471 |
+- -—- - e et +
. streg brv i.age, nolog
LR chi2(5) = 56.61
Log likelihood = 378.28189 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err z P>|z| [95% Conf. Intervall]
_____________ + _— _— —_— _— —_— —_————
brv | .8594122  .1178685 -1.10 0.269 .6568393 1.12446
|
age |
80 | 1.66633 .292713 2.91 0.004 1.180962 2.35118
85 |  3.198481 .597915 6.22 0.000 2.21729 4.613866
90 | 3.613713 1.188938 3.90 0.000 1.896279 6.886607
95 | 20.97061 12.51454 5.10 0.000 6.510932 67.54276
. streg brv i.age sex, nolog
LR chi2(6) = 71.38
Log likelihood = 385.66573 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err z P>|z]| [95% Conf. Intervall
_____________ + _— _— _— _— _— _—
brv | .9735923  .1364956 -0.19 0.849 . 7396742 1.281486
|
age |
80 | 1.675997  .2944392 2.94 0.003 1.187774 2.364897
85 | 3.171938  .5908462 6.20 0.000 2.201754 4.569624
90 | 3.65729 1.203318 3.94 0.000 1.919102 6.96981
95 | 27.80767 16.74873 5.52  0.000 8.540449 90.54167
|
sex | .611474 .0798274 -3.77 0.000 .4734285 . 7897718

99
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. streg i.age i.sex i.brv#i.sex, nolog dist(exp)
Exponential regression -- log relative-hazard form
No. of subjects = 399 Number of obs = 1036
No. of failures = 278
Time at risk = 2435.708028
LR chi2(7) = 73.22
Log likelihood = 386.58403 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall
_____________ I — — — — —_—
age |
80 | 1.677943  .2948222 2.95 0.003 1.189097 2.367757
85 | 3.129915 .5842027 6.11 0.000 2.170974 4.512429
90 |  3.655497 1.203045 3.94 0.000 1.917834 6.967575
95 |  28.74863  17.34039 5.57 0.000 8.814459 93.76454
[
2.sex | .5368135  .0889125 -3.76  0.000 .3880064 . 7426907
|
brv#sex |
11 | .823687  .1585562 -1.01 0.314 .5648194 1.201199
12 | 1.199917  .2501707 0.87 0.382 .7974142 1.805586

We could split the post bereavement period into multiple categories (e.g., within one year and
subsequent to one year following bereavement) and compare the risks between these categories.

. stcox brv, nolog

Cox regression -- Breslow method for ties

No. of subjects = 399 Number of obs = 1036
No. of failures = 278
Time at risk = 2435.641342
LR chi2(1) = 2.25
Log likelihood =  -1379.1483 Prob > chi2 = 0.1333
t | Haz. Ratio  Std. Err. z P>|z| [95% Conf. Intervall
____+ _______ —_——— B ——— = = o — ——
brv | .8134514 .1131032 -1.48 0.138 .6194119 1.068276
. stcox brv sex, nolog
Cox regression -- Breslow method for ties
No. of subjects = 399 Number of obs = 1036
No. of failures = 278
Time at risk = 2435.641342
LR chi2(2) = 15.82
Log likelihood =  -1372.3656 Prob > chi2 = 0.0004
_t | Haz. Ratio Std. Err. z P>zl [95% Conf. Intervall]
____+ ____________________ B ——— = —
brv | .9249887 .1317637 -0.55 0.584 .6996545 1.222895
sex | .6233905 .0815085 -3.61 0.000 .4824643 .8054806




()

. stcox i.sex i.sex#i.brv, nolog

Cox regression -- Breslow method for ties
No. of subjects = 399 Number of obs = 1036
No. of failures = 278
Time at risk = 2435.708028
LR chi2(3) = 17.08
Log likelihood =  -1371.7342 Prob > chi2 = 0.0007
_t | Haz. Ratio Std. Err z P>|z| [95% Conf. Intervall
_____________ +___ _— _— _— _— _—
2.sex | .56592749 .0925961 -3.51  0.000 .4042933 .7T73667
|
sex#brv |
11 | .8055967 .155495 -1.12  0.263 .5518488 1.176022
21 | 1.103135 .2337666 0.46 0.643 .728198 1.67112
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130. Melanoma: Understanding splines

. use melanoma
(Skin melanoma, diagnosed 1975-94, follow-up to 1995)

. gen female = sex ==
stset surv_mm, failure(status=1,2) scale(12) exit(time 120) id(id)

id: id
failure event: status == 1 2
obs. time interval: (surv_mm[_n-1], surv_mm]
exit on or before: time 120
t for analysis: time/12

7775 total observations
0 exclusions

7775 observations remaining, representing

7775 subjects

2773 failures in single-failure-per-subject data
43306.833 total analysis time at risk and under observation

at risk from t = 0
earliest observed entry t = 0
last observed exit t = 10

(a) . stsplit fu, every(‘=1/12’)
(514,861 observations (episodes) created)

. gen risktime = _t - _t0

. collapse (sum) d = _d risktime (min) start=_tO0 (max) end=_t, ///
> by(fu female year8594 agegrp)

// Fit a model with a parameter for each interval
. egen interval = group(start)

. gen midtime = (start + end)/2

. glm d ibn.interval, family(poisson) link(log) lnoffset(risktime) nocons

Generalized linear models No. of obs = 1,920
Optimization : ML Residual df = 1,800
Scale parameter = 1
Deviance = 3108.787038 (1/df) Deviance = 1.727104
Pearson = 4379.789968 (1/df) Pearson =  2.433217
Variance function: V(u) = u [Poisson]
Link function : g(u) = 1n(w) [Log]
AIC = 3.324284
Log likelihood = -3071.312939 BIC = -10499.36
| 0IM
d | Coef Std. Err z P>zl [95% Conf. Intervall]
_____________ e e
interval |
1 | -3.1046 .1856953 -16.72 0.000 -3.468556 -2.740643
2 | -2.534902 .140028 -18.10 0.000 -2.809352 -2.260452
3 | -2.699421 .15624986 -17.70  0.000 -2.998313 -2.40053
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-2.5931
.131684
.186308
-2.1953
2.18812
.248926
.278172
.430916
.039612
.220242
.046784
1.92061
.918812
.112308
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.194814
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.225282
.949008
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.087886
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.159878
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.466582
.490006
.325434
.257516
.218774
.408738
. 364492
.262294
.630021
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.565738
.439888
.544659
.350129
.184725
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.385035
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.607776
2.50714
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.839854
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.445363
.082119
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-3.154488
-3.556518
-3.543947
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-3.60726
-4.029429
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-4.304433
-4.688707
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. // predict the baseline (one parameter for each interval)
. predict haz_grp, nooffset
(option mu assumed; predicted mean d)

. replace haz_grp = haz_grp*1000
(1,920 real changes made)

twoway (scatter haz_grp midtime) ///
, xtitle("Years from diagnosis") ///
ytitle("Baseline hazard (1000 pys)") ///
ylabel(5 10 20 50 100 150, angle(h)) ///
name (piecewise, replace)

vV V. V V .

. di "Total number of parameters is ‘e(k)’"
Total number of parameters is 120
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Figure 20: Localised skin melanoma. Plot of the estimated baseline hazard function for the piecewise

model.

(b) The log hazard function before the knot at 1.5 year, ¢t < 1.5, is:

Inh(t) = Bo + Ait
The log hazard function after the knot at 1.5 year, ¢ > 1.5, is:
Inh(t) = Bo + Prt + B2+ Bs(t — 1)
. gen lin_sl1 = midtime

. gen lin_int2 = (midtime>1.5)
. gen lin_s2 = (midtime - 1.5)*(midtime>1.5)
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. // Fit two separ
. glm d 1lin_s1 lin

Generalized linear
Optimization

Deviance
Pearson

Variance function:
Link function

Log likelihood =

lin_s1
lin_int2
lin_s2

_cons
In(risktime)

EXERCISE SOLUTIONS

ate linear regression lines (4 parameters)
_int2 1lin_s2 , family(poisson) link(log) lnoffset(risktime)

models No. of obs = 1,920
: ML Residual df = 1,916
Scale parameter = 1
3241.142594 (1/df) Deviance = 1.691619
4714.038396 (1/df) Pearson = 2.460354

V(u) = u [Poisson]

: g(u) = 1n(w) [Log]
AIC = 3.272386
-3137.490717 BIC = -11243.97
0IM

Coef Std. Err z P>zl [95% Conf. Intervall]
3833764 .0767377 5.00 0.000 .2329733 .5337795
2135571 .0730092 -2.93 0.003 -.3566525 -.0704617
5338942 .0775133 -6.89 0.000 -.6858175  -.3819709
2.76861 .0698084 -39.66 0.000 -2.905432 -2.631788

1 (exposure)

. predict haz_linl
(option mu assumed

. replace haz_linl
(1,920 real change

twoway (scatter

V V V V V V V V.

. di "the gradient
the gradient up to

. di "the gradient
the gradient after

, nooffset
; predicted mean d)

= haz_1in1*1000
s made)

haz_grp midtime) ///

(line haz_linl midtime if midtime<=1.5, lcolor(red)) ///
(line haz_linl midtime if midtime>1.5, lcolor(red)) ///
, xtitle("Years from diagnosis") ///

ytitle("Baseline hazard (1000 pys)") ///

xline(1.5, lcolor(black) lpattern(dash)) ///

ylabel(5 10 20 50 100 150, angle(h)) ///

legend(off) ///

name (linearl, replace)

up to 1.5 years is: " _b[lin_s1]
1.5 years is: .38337637

after 1.5 years is: " _b[lin_s1] + _b[lin_s2]
1.5 years is: -.15051783
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Figure 21: Localised skin melanoma.
model and linear spline model.
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Plot of the estimated baseline hazard functions for the piecewise

Comparing the piecewise fitted function and the linear spline function, shown in Figure we
observe that the linear spline model fits the data very well.

. di "the gradient up to 1 year is: " _b[lin_s1]
the gradient up to 1 year is: .24828023

. di "the gradient after 1 year is: " _b[lin_s1] + _b[lin_s2]
the gradient after 1 year is: -.271407

. glm 4 lin_s1 1in_s2 , family(poisson) link(log) lnoffset(risktime)
Iteration O: log likelihood = -3325.6269
Iteration 1: log likelihood =  -3143.98
Iteration 2: log likelihood = -3141.6801
Iteration 3: log likelihood = -3141.6762
Iteration 4: log likelihood = -3141.6762
Generalized linear models No. of obs = 1,920
Optimization : ML Residual df 1,917
Scale parameter = 1
Deviance = 3249.513617 (1/df) Deviance = 1.695104
Pearson = 4756.012765 (1/df) Pearson =  2.480966
Variance function: V(u) = u [Poisson]
Link function : g(u) = 1n(w) [Log]
AIC =  3.275704
Log likelihood = -3141.676229 BIC = -11243.16
| 0IM
d | Coef.  Std. Err. z P>|z]| [95% Conf. Intervall
lin_s1 | .2178297 .0513656 4.24 0.000 .1171549 .3185045
lin_s2 | -.380508 .0567922 -6.70 0.000 -.4918187 -.2691973
_cons | -2.681235 .0619486 -43.28 0.000 -2.802652 -2.559818
In(risktime) | 1 (exposure)
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. predict haz_lin2, nooffset
(option mu assumed; predicted mean d)

. replace haz_lin2 = haz_1in2%*1000
(1,920 real changes made)

twoway (scatter haz_grp midtime) ///
(line haz_1in2 midtime, lcolor(red)) ///
, xtitle("Years from diagnosis") ///
ytitle("Baseline hazard (1000 pys)") ///
xline(1.5, lcolor(black) lpattern(dash)) ///
ylabel(5 10 20 50 100 150, angle(h)) ///
legend(off) ///
name (linear2, replace)

V V.V V V V V.-

. di "the gradient up to 1.5 years is: " _b[lin_s1]
the gradient up to 1.5 years is: .21782972

. di "the gradient after to 1.5 years is: " _b[lin_s1] + _b[lin_s2]

the gradient after to 1.5 years is: -.16267827
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Figure 22: Localised skin melanoma. Plot of the estimated baseline hazard functions for the piecewise
model and linear spline model.

. di "the gradient up to 1 year is: " _b[lin_s1]
the gradient up to 1 year is: .6310592

. di "the gradient after to 1 year is: " _b[lin_s1] + _b[lin_s2]
the gradient after to 1 year is: -.24886701



of obs
idual df
le parameter
df) Deviance
df) Pearson

isson]

gl

1,920
1,912

1
1.690618
2.431215

3.272031
-11222.41

-.386811
-1.309515
-.4344508
-.3078434
-.7839438

-.75665
-.3368264
-3.092126

1.69151
1.060532
.3382799
.2362367
1.248998
1.578002
.4359847
-2.59125

. gen cubic_sl = midtime
. gen cubic_s2 = midtime~2
. gen cubic_s3 = midtime~3
. gen cubic_int = midtime>2
. gen cubic_lin = (midtime - 2)*(midtime>2)
. gen cubic_quad = ((midtime - 2)°2)*(midtime>2)
. gen cubic_s4 = ((midtime - 2)~3)*(midtime>2)
. glm 4 cubicx , family(poisson) link(log) lnoffset(risktime)
Iteration O: log likelihood = -3314.3924
Iteration 1: log likelihood = -3136.0859
Iteration 2: log likelihood = -3133.1534
Iteration 3: log likelihood = -3133.1501
Iteration 4: log likelihood = -3133.1501
Generalized linear models No.
Optimization : ML Res
Sca
Deviance = 3232.461336 (1/
Pearson = 4648.482544 1/
Variance function: V(u) = u [Po
Link function : g(u) = 1n(w) [Lo
AIC
Log likelihood = -3133.150088 BIC
[ 0IM
d | Coef.  Std. Err. z P>|z]|
_____________ S -
cubic_s1 | .6523493 .5301936 1.23 0.219
cubic_s2 | -.1244914 .604615 -0.21  0.837
cubic_s3 | -.0480855 .1971288 -0.24 0.807
cubic_int | -.0358033 .1387985 -0.26  0.796
cubic_lin | 2325272 .5186172 0.45 0.654
cubic_quad | .4106761 .5955855 0.69 0.490
cubic_s4 | .0495792 .1971493 0.25 0.801
_cons | -2.841688 .1277767 22.24 0.000
In(risktime) | 1 (exposure)

. predict haz_cubicl, nooffset
(option mu assumed; predicted mean d)

. replace haz_cubicl = haz_cubic1%*1000

(1,920 real changes made)

twoway

V VV V V V V V.

(scatter haz_grp midtime)

(line haz_cubicl midtime if midtime<=2, lcolor(red)) ///
(line haz_cubicl midtime if midtime>2, lcolor(red)) ///
, xtitle("Years from diagnosis") ///
ytitle("Baseline hazard (1000 pys)") ///
xline(2, lcolor(black) lpattern(dash)) ///
ylabel(5 10 20 50 100 150, angle(h)) ///

legend(off) ///

name (cubicl, replace)
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Figure 23: Localised skin melanoma. Plot of the estimated baseline hazard functions for the piecewise
model and cubic spline model.

(e) . glm d cubic_s* cubic_lin cubic_quad, family(poisson) link(log) lnoffset(risktime)

Iteration O: log likelihood = -3314.4284
Iteration 1: log likelihood = -3136.1237
Iteration 2: log likelihood = -3133.1865
Iteration 3: log likelihood = -3133.1833
Iteration 4: log likelihood = -3133.1833
Generalized linear models No. of obs = 1,920
Optimization : ML Residual df = 1,913
Scale parameter = 1
Deviance = 3232.527663 (1/df) Deviance = 1.689769
Pearson = 4648.358616 (1/df) Pearson =  2.429879
Variance function: V(u) = u [Poisson]
Link function : g(u) = 1n(u) [Logl
AIC = 3.271024
Log likelihood = -3133.183252 BIC = -11229.91
I 0IM
d | Coef. Std. Err. z P>|z| [95% Conf. Intervall
— e —_— —_— _——
cubic_s1 | .5997222  .4889988 1.23  0.220 -.3586977 1.558142
cubic_s2 | -.0478583  .5263989 -0.09 0.928 -1.079581 .9838645
cubic_s3 | -.0774854 .1608245 -0.48 0.630 -.3926957 .2377248
cubic_s4 | .0787461 .1614884 0.49 0.626 -.2377654 .3952575
cubic_lin | .320885 .3899094 0.82 0.411 -.4433234 1.085093
cubic_quad | .5613397 .4429728 1.16 0.246 -.3548136 1.381608
_cons | -2.834161 .124225  -22.81  0.000 -3.077638 -2.590685
In(risktime) | 1 (exposure)

. predict haz_cubic2, nooffset
(option mu assumed; predicted mean d)

. replace haz_cubic2 = haz_cubic2*1000
(1,920 real changes made)

. twoway (scatter haz_grp midtime) ///



V V. V V V V VvV

Baseline hazard (1000 pys)

(line haz_cubic2 midtime, lcolor(red)) ///
, xtitle("Years from diagnosis") ///
ytitle("Baseline hazard (1000 pys)") ///
xline(2, lcolor(black) lpattern(dash)) ///
ylabel(5 10 20 50 100 150, angle(h)) ///

legend(off) ///

name (cubic2, replace)
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Figure 24: Localised skin melanoma. Plot of the estimated baseline hazard functions for the piecewise
model and cubic spline model.

(f)

The fitted cubic spline function appears over-parameterised.

. glm d cubic_s* cubic_quad, family(poisson) link(log) lnoffset(risktime)

Generalized linear models No. of obs = 1,920
Optimization : ML Residual df 1,914
Scale parameter = 1
Deviance = 3233.205488 (1/df) Deviance = 1.68924
Pearson = 4648.130991 (1/df) Pearson =  2.428491
Variance function: V(u) = u [Poisson]
Link function : g(uw) = 1n(w) [Log]
AIC = 3.270336
Log likelihood = -3133.522164 BIC = -11236.79
|
d | Coef. Std. Err. z P>zl [95% Conf. Intervall]
cubic_s1 | .8568882 .3786741 2.26 0.024 .1147007 1.599076
cubic_s2 | -.3818574 .3374689 -1.13 0.258 -1.043284 .2795696
cubic_s3 | .0351165 .0851876 0.41 0.680 -.1318482 .2020812
cubic_s4 | -.0350218 .0841447 -0.42 0.677 -.1999424 .1298989
cubic_quad | .1861311 .1969974 0.94 0.345 -.1999767 .5722389
_cons | -2.875102 .1148165 -25.04  0.000 -3.100138 -2.650066
In(risktime) | 1 (exposure)

. predict haz_cubic3, nooffset
(option mu assumed; predicted mean d)

. replace haz_cubic3 = haz_cubic3*1000
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(1,920 real changes made)

twoway (scatter haz_grp midtime) ///
(line haz_cubic3 midtime, lcolor(red)) ///
, xtitle("Years from diagnosis") ///
ytitle("Baseline hazard (1000 pys)") ///
xline(2, lcolor(black) lpattern(dash)) ///
ylabel(5 10 20 50 100 150, angle(h)) ///
legend(off) ///
name (cubic3, replace)

V V.V V V V V.-
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Figure 25: Localised skin melanoma. Plot of the estimated baseline hazard functions for the piecewise
model and cubic spline model with continuous first derivatives.

If you brought your magnifying glass, you can see an ever so slight improvement in the stability
and smoothness of the fitted function.

glm d cubic_s*, family(poisson) link(log) lnoffset(risktime)

predict haz_cubic4, nooffset

replace haz_cubic4 = haz_cubic4+*1000

twoway (scatter haz_grp midtime) ///
(line haz_cubic4 midtime, lcolor(red)) ///
, xtitle("Years from diagnosis") ///
ytitle("Baseline hazard (1000 pys)") ///
xline(2, lcolor(black) lpattern(dash)) ///
ylabel(5 10 20 50 100 150, angle(h)) ///
legend(off) ///
name (cubic4, replace)



Baseline hazard (1000 pys)

1504

o
ip.
100 % °
% o
v
]
1
1
l
|
1
1
1
! ® ° °
20 : L § ° o 00 .
104 | °
5 |
T T T T T
0 2 6 8 10

Years from diagnosis

73

Figure 26: Localised skin melanoma. Plot of the estimated baseline hazard functions for the piecewise
model and cubic spline model with continuous first and second derivatives.

The model fit appears to improve as the constraints are added, providing a more plausible fit

to the data.

. rcsgen midtime, gen(rcs) df(4) fw(d)
Variables rcsl to rcs4 were created

. global knots ‘r(knots)’

. glm d rcsl, family(poisson) link(log) lnoffset(risktime)

Generalized linear models No. of obs = 1,920
Optimization : ML Residual df 1,918
Scale parameter = 1
Deviance = 3296.146807 (1/df) Deviance = 1.718533
Pearson =  4685.68724 (1/df) Pearson =  2.443007
Variance function: V(u) = u [Poisson]
Link function : g(u) = 1n(u) [Logl
AIC = 3.298951
Log likelihood = -3164.992824 BIC = -11204.09
|
4 | Coef. Std. Err. P>|z| [95% Conf. Intervall
rcsl | -.1200737 .0077061 -15.58 0.000 -.1351773 -.1049701
_cons | -2.336551 .0301252 -77.56 0.000 -2.395595 -2.277506
In(risktime) | 1  (exposure)

. estimates store rcsl

. predict haz_rcsl, nooffset

(option mu assumed; predicted mean d)

. replace haz_rcsl = haz_rcs1*1000

(1,920 real changes made)

. twoway
>
>

(scatter haz_grp midtime)

(line haz_rcsl midtime, lcolor(red)) ///
, xtitle("Years from diagnosis") ///
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ytitle("Baseline hazard (1000 pys)") ///
ylabel(5 10 20 50 100 150, angle(h)) ///
legend(off) ///

name(rcsl, replace)
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Figure 27: Localised skin melanoma. Plot of the estimated baseline hazard functions for the piecewise
model and linear model.

The linear model appears to fit very poorly.

() - glm d rcs*, family(poisson) link(log) lnoffset(risktime)

Generalized linear models No. of obs = 1,920
Optimization : ML Residual df = 1,915
Scale parameter = 1
Deviance = 3233.589355 (1/df) Deviance = 1.688558
Pearson = 4648.401252 (1/df) Pearson = 2.427364
Variance function: V(u) = u [Poisson]
Link function : g(u) = 1n(w) [Log]
AIC = 3.269494
Log likelihood = -3133.714098 BIC = -11243.96
| 0IM
d | Coef Std. Err z P>zl [95% Conf. Intervall]
_____________ +________________________________________________________________
rcsi | .5594366 .1069501 5.23 0.000 .3498183 .769055
rcs2 | .2341777 .0568007 4.12 0.000 .1228503 .3455051
rcs3 | -.1274038 .0418432 -3.04 0.002 -.209415  -.0453926
rcséd | .0005971 .0084695 0.07 0.944 -.0160029 .0171971
_cons | -2.825642 .0782389 -36.12 0.000 -2.978988 -2.672297
In(risktime) | 1 (exposure)

. estimates store rcs2
. 1lrtest rcsl rcs2

Likelihood-ratio test LR chi2(3)
(Assumption: rcsl nested in rcs2) Prob > chi2

62.56
0.0000

. predict haz_rcs2, nooffset
(option mu assumed; predicted mean d)
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. replace haz_rcs2 = haz_rcs2*x1000

(1,920 real changes made)

The likelihood ratio test gave a p-value of <0.0001, indicating evidence against the null hy-
pothesis that the effect is linear.

. predict haz_rcs2, nooffset
(option mu assumed; predicted mean d)

. replace haz_rcs2 = haz_rcs2*1000
(72 real changes made)

twoway (scatter haz_grp midtime) ///
(line haz_rcs2 midtime, lcolor(red)) ///
, xtitle("Years from diagnosis") ///
ytitle("Baseline hazard (1000 pys)") ///
yscale(log) ///
xline($knots , lcolor(black) lpattern(dash)) ///
ylabel(5 10 20 50 100 150, angle(h)) ///
legend(off) ///
name (rcs2, replace)
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Figure 28: Localised skin melanoma. Plot of the estimated baseline hazard functions for the piecewise
model and restricted cubic spline model.

(k) . drop rcs*
. rcsgen midtime, gen(rcs) knots(l 2 3) fw(d)
Variables rcsl to rcs2 were created

. global knots ‘r(knots)’

. glm d rcs*, family(poisson) link(log) lnoffset(risktime)

Generalized linear models No. of obs = 1,920
Optimization : ML Residual df = 1,917
Scale parameter = 1
Deviance = 3265.098545 (1/df) Deviance = 1.703233
Pearson = 4774.278604 (1/df) Pearson =  2.490495
Variance function: V(u) = u [Poisson]
Link function : g(u) = 1n(u) [Logl
AIC = 3.283822
Log likelihood = -3149.468693 BIC = -11227.58
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| 0IM
d | Coef. Std. Err. z P>|z| [95% Conf. Intervall]
[ _+___ [y [y _———
rcsl | .0756425 .0364661 2.07 0.038 .0041702 .1471148
rcs2 | .0804797 .0145799 5.52 0.000 .0519036 .1090557
_cons | -2.568201 .05632653 -48.22 0.000 -2.672599 -2.463803
In(risktime) | 1 (exposure)

. predict haz_rcs3, nooffset
(option mu assumed; predicted mean d)

. replace haz_rcs3 = haz_rcs3*1000
(1,920 real changes made)

twoway (scatter haz_grp midtime) ///
(1ine haz_rcs3 midtime, lcolor(red)) ///
, xtitle("Years from diagnosis") ///
ytitle("Baseline hazard (1000 pys)") ///
xline($knots , lcolor(black) lpattern(dash)) ///
ylabel(5 10 20 50 100 150, angle(h)) ///
legend(off) ///
name(rcs3, replace)
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Figure 29: Localised skin melanoma. Plot of the estimated baseline hazard functions for the piecewise
model and restricted cubic spline model with knots at 1, 2, and 3 years.



131. Flexible Parametric Models for cause-specific mortality

This exercise has no written solutions. A do-file is provided.

7
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132. Flexible Parametric Models with time-dependent effects

This exercise has no written solutions. A do-file is provided.



79

140. Probability of death in a competing risks framework (cause-specific survival)

(a) Load the colon data dropping those with missing stage.

use colon, clear
drop if stage ==
gen female = sex==

Plot the complement of the Kaplan-Meier estimate for males (i.e. 1 minus Kaplan-Meier sur-
vival estimate) for both cancer and other causes. Describe what you see.

Probability of Death

0 2 4 6 8 10
Time Since Diagnosis (Years)

Cancer ———-—- Other Causes

(b) Use the stcompet command to estimate the cumulative incidence function for both cancer and
other causes. Plot the cumulative incidence functions for males along with the complements
of the Kaplan-Meier estimates from part (a).

stset surv_mm, failure(status==1) scale(12) exit(time 120.5)
stcompet CIF_sex=ci, compet1(2) by(sex)
gen CIF_sex_cancer=CIF_sex if status==
gen CIF_sex_other=CIF_sex if status==2



80

EXERCISE SOLUTIONS

8 10
rs)

0.5+
£
S 0.4+
(m]
©
2 0.3+
E
®
Qo
O 0.2+
o
0.1+
0.0 ~
T T T T
0 2 4 6
Time Since Diagnosis (Yea
CancerK-M ————-
Cancer CIF

Other K-M
Other CIF

The cumulative incidence functions are lower than th

Obtain estimates of the CIF for cancer and other cau
curves.

e cause-specific survival functions.

ses by age group. Plot and interpret the

stset surv_mm, failure(status==1) scale(12) exit(time 120.5)

stcompet CIF_age=ci, competl(2) by(agegrp)

twoway (line CIF_age _t if agegrp == 0 & status == 1, sort connect(stepstair)) ///

(line CIF_age _t if agegrp == 1 & status == 1
(line CIF_age _t if agegrp == 2 & status == 1
(line CIF_age _t if agegrp == 3 & status == 1
, legend(order(l "<45" 2 "45-59" 3 "60-74" 4
xtitle("Years since diagnosis") ///
ytitle("CIF") ///

title("Cancer") ///

name (CIF_agel,replace)

, sort connect(stepstair)) ///
, sort connect(stepstair)) ///
, sort connect(stepstair)) ///
"75+") ring(0) pos(5) cols(1)) ///

twoway (line CIF_age _t if agegrp == 0 & status == 2, sort connect(stepstair)) ///

(line CIF_age _t if agegrp == 1 & status == 2
(line CIF_age _t if agegrp == 2 & status == 2
(line CIF_age _t if agegrp == 3 & status == 2
, legend(order(1 "<45" 2 "45-59" 3 "60-74" 4
xtitle("Years since diagnosis") ///
ytitle("CIF") ///

title("Other causes") ///

name (CIF_age2,replace)

graph combine CIF_agel CIF_age2, nocopies ycommon

, sort connect(stepstair)) ///
, sort connect(stepstair)) ///
, sort connect(stepstair)) ///
"75+") ring(0) pos(11) cols(1)) ///
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Cancer Other causes

CIF
CIF

0 2 4 6 8 10
Years since diagnosis

Years since diagnosis

Being old increases the probability of both dying from cancer and from other causes. Younger
people have a much lower probability of dying from other causes.

(d) Now obtain the CIF for cancer and other causes by stage group. Plot the results.
stcompet CIF_stage=ci, competl(2) by(stage)

twoway (line CIF_stage _t if stage == 1 & status == 1, sort connect(stepstair)) ///

(line CIF_stage _t if stage == 2 & status == 1, sort connect(stepstair)) ///
(line CIF_stage _t if stage == 3 & status == 1, sort connect(stepstair)) ///

, legend(order(l "local" 2 "regional" 3 "distant") ring(0) pos(5) cols(1)) ///
xtitle("Years since diagnosis") ///

ytitle("CIF") ///

title("Cancer") ///

name (CIF_stagel,replace)

twoway (line CIF_stage _t if stage == 1 & status == 2, sort connect(stepstair)) ///

(line CIF_stage _t if stage == 2 & status == 2, sort connect(stepstair)) ///
(line CIF_stage _t if stage == 3 & status == 2, sort connect(stepstair)) ///

, legend(order(l "local" 2 "regional" 3 "distant") ring(0) pos(1l) cols(1)) ///
xtitle("Years since diagnosis") ///

ytitle("CIF") ///

title("Other causes") ///

name (CIF_stage2,replace)

graph combine CIF_stagel CIF_stage2, nocopies ycommon
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Those diagonosed with regional and distant stage are more likely to die from their cancer and
thus reducing their chance of dying from other causes.
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180. Outcome-selective sampling designs (nested case-control and case-cohort)

(a) . * stset the data

. stset exit, fail(status==1) enter(dx) origin(dx) scale(365.24) id(id)

id:

failure event:

obs. time interval:
enter on or after:
exit on or before:
t for analysis:
origin:

id

status ==
(exit[_n-1], exit]
time dx
failure
(time-origin)/365.24
time dx

7775 total observations

0 exclusions

7775 observations remaining, representing

7775 subjects

1913 failures in single-failure-per-subject data
51276.908 total analysis time at risk and under observation

at risk from t 0
earliest observed entry t 0
last observed exit t = 20.96156

There are 1913 deaths (events) among 7775 patients.

(b) The estimated HR changes from 0.627167 to 0.700238 on adjusting for age, period, and stage
(and to 0.749139 if we adjust for subsite). Some, but not a lot of, confounding.

(¢) We would expect similar estimates (and standard errors) from the three models since we are
fitting what is conceptually the same model 3 times just with a different approach to modelling
the baseline hazard. We would expect the results from Poisson regression to be more different
to the other two since it is modelling the baseline hazard crudely (a step function assuming
the hazard is constant within 5-year intervals). We see, however, that the estimated HRs are

quite robust to this.

. estimates table cox fpm pois, eform b(%7.3f) se(%7.3f) eq(l)

Variable |  cox fpm pois
_____________ I .
#1 |

sex |
Male | (base) (base) (base)
|
Female | 0.700 0.699 0.697
| 0.033 0.033 0.033
|
agegrp |
0-44 | (base) (base) (base)
|
45-59 | 1.286 1.288 1.294
| 0.087 0.087 0.087
60-74 | 1.712 1.717 1.733
| 0.111 0.111 0.112
75+ | 2.678 2.697 2.728
| 0.200 0.202 0.204
|

year8594 |
Diagnosed.. | (base) (base) (base)

|
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Diagnosed. .

stage
Unknown

Regional

|

|

|

|

|

|
Localised |
|

|

|
Distant |
|

(base)

.039
071
.825
.441
13.618

1.088

O b O+

(base)

1.038
0.071
4.842
0.443
13.839
1.105

(base)

1

1.040
0.071
4.855
0.443
3.362
1.056
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(d) There were 1913 events so with 1:1 matching we would expect an absolute maximum of double
this (3826) unique individuals in the NCC. However, since individuals can be both cases and
controls, or be controls for multiple cases we will see fewer unique individuals.

(e) i. _time is the underlying time scale upon which we have matched controls to cases. In this
example it is time since diagnosis.

ii. There are an equal number of cases and controls, also within each age stratum. This is
not always the case, since it is possible that no eligible controls exist for some cases.

. tab agegrp _case, missing

| 0 for controls; 1 for
Age in 4 | cases

categories | 0 1] Total
0-44 | 386 386 | 772

45-59 | 522 522 | 1,044
60-74 | 640 640 | 1,280

75+ | 365 365 | 730
___________ e
Total | 1,913 1,913 | 3,826

iii. There are 3,247 unique individuals among the 3,826 cases and controls.

. codebook i

d

Unique patient ID

type: nume

range: [4,

ric (int)

7773]

unique values: 3,247

units:
missing .:

1

0/3,826

(f) . clogit _case i.sex i.year8594 i.stage, group(_set) or

Conditional (fixed-effects) logistic regression

Number of obs = 3,826
LR chi2(5) = 530.95
Prob > chi2 = 0.0000
Log likelihood = -1060.5158 Pseudo R2 = 0.2002
_case | 0dds Ratio Std. Err. z P>z [95% Conf. Intervall
sex |
Male | 1 (base)
Female | .7263021 .0541607 -4.29 0.000 .6275421 .8406047
|
|

year8594



(h)
(i)

85

75-84 | 1 (base)
85-94 | .7069653 .0568284 -4.31 0.000 .6039145 .8276006
|
stage |
Unknown | 1 (base)
Localised | .9390677 .0912807 -0.65 0.518 .7761705 1.136153
Regional | 4.467645 .8035128 8.32 0.000 3.140427 6.355776
Distant | 16.67736 3.559866 13.18 0.000 10.97575 25.34082

i. Rate ratio (or hazard ratio).

ii. Yes it is similar. We expect it to be similar, since we are estimating the same underlying
quantity. We would not expect it to be identical to the full cohort estimate due to sampling
variation.

iii. Yes, but the standard errors are larger and the confidence intervals wider.

Outside subcohort | Inside subcohort Total
Non-cases 4,392 1,470 5,862
Cases 1,440 473 1,913
Total 5,832 1,943 7,775

The exact sampling fraction of the subcohort is 1943/7775 = 0.2499. The exact sampling
fraction of non-cases is 1470/5862 = 0.2508.

Hopefully the weights are as you expected. Ask if you don’t follow. All cases have weight
1 since we included all cases. The controls have weight of approximately 4; we took a 25%
sample so each sampled control represents 4 individuals. Non-cases outside the subcohort do
not contribute to the analysis and have a missing weight.

. tab wt, missing

wt | Freq. Percent Cum.
1| 1,913 24.60 24.60
3.987755 | 1,470 18.91 43.51
.| 4,392 56.49 100.00

Total | 7,775 100.00

Note that Stata reports 4392 weights invalid PROBABLE ERROR.

The first column is the analysis of the full cohort. The three approaches to analysing the
case-cohort study give similar estimates to each other. Estimates are also similar to the full
cohort, except with larger standard errors.

. estimates table cox cox_cc fpm_cc pois_cc, eform b(%7.3f) se()7.3f) eq(l)

Variable | cox cox_cc fpm_cc pois_cc
_____________ 4 N _
#1 |

sex |
Male | (base) (base) (base) (base)

|
Female | 0.700 0.684 0.683 0.680
| 0.033 0.051 0.051 0.050

|

|
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0-44 | (base) (base) (base) (base)
|
45-59 | 1.286 1.284 1.288 1.293
| 0.087 0.130 0.131 0.130
60-74 | 1.712 1.613 1.618 1.632
| 0.111 0.164 0.166 0.166
75+ | 2.678 2.519 2.538 2.558
| 0.200 0.331 0.337 0.331
|
year8594 |
Diagnosed.. | (base) (base) (base) (base)
|
Diagnosed.. | 0.799 0.822 0.824 0.843
| 0.038 0.061 0.062 0.062
|
stage |
Unknown | (base) (base) (base) (base)
|
Localised | 1.039 1.027 1.027 1.030
| 0.071 0.090 0.090 0.091
Regional | 4.825 5.172 5.196 5.204
| 0.441 0.748 0.756 0.757
Distant | 13.618 13.666 13.894 13.551
| 1.088 2.006 2.062 1.903

(1) Following is our output when we generated and analysed a nested case-control study 5 times.
We see that there is sampling variation in the parameter estimates from the five nested case-
control studies but they are centered on the full cohort estimate. We see that the standard
errors of the estimates from the nested case-control studies are larger than for the full cohort
but there is some sampling variation.

est table Complete_Cox nccl ncc2 ncc3 ncc4d ncch, eform equations(l) ///
b(%9.6f) se modelwidth(10) title("Hazard ratio")

Complete nccl ncc2 ncc3 nccéd ncch

0.588814 0.616907 0.602383 0.544285 0.574463  0.599772
0.038538 0.060836 0.057810 0.051935 0.057257  0.059603

I
+
I
I
|
I
year8594 |
1 | 0.716884 0.699482 0.762841 0.747950 0.811977  0.715201

I 0.047445 0.069447 0.076288 0.074391 0.083310 0.069803

|

I

I

|

|

I

I

|

agegrp
1 1.326397 1.272060 1.350298 1.208072 1.321977  1.398562
0.124911 0.163739 0.178126 0.155366 0.169123 0.180422
2 1.857323 1.931832 1.841300 1.890836 1.700583  2.157252
0.168787 0.250121 0.239062 0.242986 0.216667 0.286852
3 3.372652 3.678843 3.248771 3.359871 3.763965 2.996758
0.352227 0.618735 0.549156 0.568002 0.648790  0.486675

(m) With 5 controls per case we will come very close to analysing the full cohort (i.e., nothing to
gain by doing a nested case-control study). However, in a more realistic scenario (where the
outcome is rare) it would be reasonable to select 5 controls per case.

(n)
(0)
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