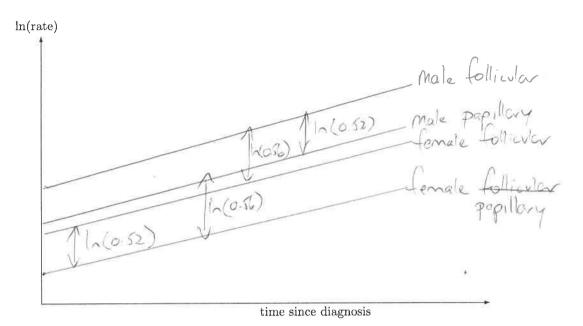
1. (a) (4 marks) Based on models 1 and/or 2, is there evidence of an association between histological type and age group? If so, describe how the distribution of histological type varies by age.

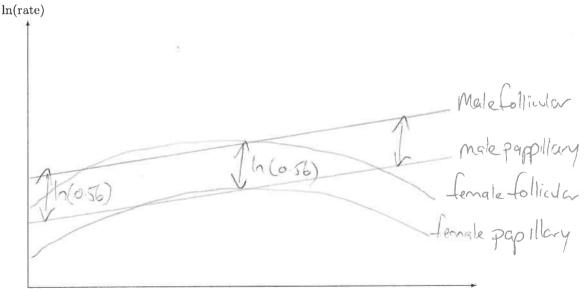
Answer:From model 1 we see that patients with papillary carcinoma experience 50% lower mortality than patients with follicular carcinoma. From model 2 we see that age is strongly associated with mortality (higher age implies higher mortality). We also see that age confounds the association between histology and mortality (HR changes from 0.5 to 0.7 on adjusting for age). This implies age must be associated with histology. Some of the apparent 'benefit' of having pappilary carcinoma (compared to follicular) is explained by age. That is, those with the less fatal histology (papillary) are more likely to have a favourable age distribution (young age). This means papillary carcinoma must be relatively more common among the young ages (and follicular carcinoma relatively more common among the older ages).

•	tab	agegrp	papillary,	rov
---	-----	--------	------------	-----

Age group	Follicula	Papillary	Total
0-39	342 24.10	1,077 75.90	
40-49	293 30.52	667 69.48	
50-59	385 36.88	659 63.12	
60-69	490 44.14	620 55.86	1,110 100.00
70+	456 44.66	565 55.34	
Total	1,966 35.40	3,588 64.60	5,554 100.00


(b) (2 marks) Based on model 2, complete the 5 missing cells in the table below with the hazard ratio for each of the 5 categories compared to individuals diagnosed with follicular carcinoma in 1958–67. That is, the joint reference category is follicular carcinoma diagnosed in 1958–67. The hazard ratios you provide should be applicable for males aged 0–39.

Answer:


	follicular	papillary
1958–67	1.00	0.71
1968-77	0.70	$0.71 \times 0.70 = 0.50$
1978-87	0.40	$0.71 \times 0.40 = 0.28$

(c) (1 mark) How would the numbers in the table in the previous question change if you instead constructed the table for females aged 0–39?

Answer: The estimates would remain unchanged since the model does not include interaction terms. (d) (2 marks) The log hazards do not necessarily have to be linear (as shown below), but there should be a constant difference between them and that difference is equal to the logarithm of the relevant hazard ratio.

(e) (2 marks) The stratified Cox model, stratified by sex, allows the baseline hazards to differ between males and females. The effect of histology is, however, assumed to be proportional for each gender with the same hazard ratio. That is, there is a constant difference between the log hazards.

time since diagnosis

- (f) (3 marks) Based on model 3, what is the estimated hazard ratio (mortality rate ratio) and 95% confidence interval comparing papillary to follicular carcinoma? Answer: Point estimate exp(-0.6992) = 0.497
 A 95 % CI for the log hazard ratio is -0.6992 ± 0.0648 = (-0.826, -0.572).
 A 95 % CI for the hazard ratio is therefore (exp(-0.826), exp(-0.572)) =(0.438, 0.564).
- (g) (3 marks) Based on model 3, perform a formal hypothesis test of the effect of sex. You should state the null hypothesis, alternative hypothesis, value of the test statistic, assumed distribution of the test statistic under the null hypothesis, and a comment on statistical significance.

Answer: We'll perform a Wald test since we do not have all relevant information to perform a likelihood ratio test.

The null hypothesis to be tested is:

$$H_0:\beta_{sex}=0$$

against

$$H_A: \beta_{sex} \neq 0.$$

The test statistic is defined as

$$z^2 = (\frac{\hat{\beta}}{s.e(\hat{\beta})})^2 = 70.4$$

and has a χ^2 distribution with 1 df under H_0 .

The critical value of a χ^2 with 1 degree of freedom is 3.841 at the 5 % significance level. Since our test statistic is 70.4 the Wald test is highly significant and we reject the null hypothesis that there is no effect of sex.

Alternatively, the test statistic could be defined as

$$z = (\frac{\hat{\beta}}{s.e(\hat{\beta})}) = -8.38$$

which has a standard normal distribution under H_0 . The critical value at the 5% level is -1.96 (there were no tables provided but this should be known) so we reject the null hypothesis.

This type of hypothesis test (parameter estimate divided by its standard error) is provided in the output of essentially every statistical model (e.g., linear, logistic, Poisson, Cox) in every standard statistical package. See, for example, the output on the next page. Note that the testing is always performed on the original scale so the test statistics and p-values are identical for both the original scale and exponentiated scale.

(h) (3 marks) Based on model 3, what is the estimated mortality rate (deaths due to DTC per 1000 person-years) during the third year of follow-up for females diagnosed with papillary carcinoma.

Answer: The model is $\ln(\text{rate}) = \text{linear predictor}$. The linear predictor for females diagnosed with papillary carcinoma during the third year of follow-up is

$$-2.094 - 1.0728 - 0.5704 - 0.6992 = -4.4364$$

That is, $\ln(\text{rate}) = -4.4364$. The mortality rate per person year is given by $\exp(-4.4364) = 0.0118$. Thus, the mortality rate per 1000 person years is $0.0118 \times 1000 = 11.8$.

2. (3 marks)

Answer: Calendar period appears to be a potential confounder, since it is associated with both the exposure (treatment) and the outcome (mortality). However, matching on calendar year of diagnosis would be overmatching and therefore not a sensible strategy. That is, by matching on calendar period the treatments would be identical for many (possibly all) of the matched sets so we would not be able to efficiently estimate the treatment effect.

Following is the full output for model 3, on both the original scale and exponentiated scale.

. X1: Streg	1.1u 1.sex	papillary,	dist(exp)	nonr		
t	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_Ifu_1	7809395	.1060801	-7.36	0.000	9888526	5730264
_Ifu_2	-1.072776	.1198709	-8.95	0.000	-1.307719	8378337
_Ifu_3	-1.018338	.1193797	-8.53	0.000	-1.252318	7843578
_Ifu_4	-1.208827	.130702	-9.25	0.000	-1.464998	9526557
_Ifu_5	-1.753111	.1666616	-10.52	0.000	-2.079762	-1.426461
_Ifu_6	-1.649412	.1616002	-10.21	0.000	-1.966142	-1.332681
_Ifu_7	-1.759166	.1723537	-10.21	0.000	-2.096973	-1.421359
_Ifu_8	-1.83878	.1811221	-10.15	0.000	-2.193772	-1.483787
_Ifu_9	-2.079463	.2045917	-10.16	0.000	-2.480456	-1.678471
_Ifu_10	-2.053329	.2045997	-10.04	0.000	-2.454337	-1.652321
_Ifu_11	-2.288301	.2310889	-9.90	0.000	-2.741227	-1.835375
_Ifu_12	-2.149023	.2210386	-9.72	0.000	-2.582251	-1.715795
_Ifu_13	-2.61796	.2834165	-9.24	0.000	-3.173446	-2.062473
_Ifu_14	-2.716724	.307103	-8.85	0.000	-3.318634	-2.114813
_Isex_2	5704134	.0680352	-8.38	0.000	7037599	4370669
papillary	6991869	.064821	-10.79	0.000	8262336	5721401
_cons	-2.094152	.0781802	-26.79	0.000	-2.247382	-1.940921
. streg						
t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]

. xi: streg i.fu i.sex papillary, dist(exp) nohr

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
_Ifu_1	.4579756	.0485821	-7.36	0.000	. 3720033	.5638165
_Ifu_2	.3420575	.0410027	-8.95	0.000	.2704362	.4326467
_Ifu_3	.3611949	.0431193	-8.53	0.000	.2858416	.4564127
_Ifu_4	. 2985473	.0390207	-9.25	0.000	.2310784	.3857153
_Ifu_5	. 1732341	.0288715	-10.52	0.000	.1249599	.2401574
_Ifu_6	. 1921629	.0310536	-10.21	0.000	.1399959	.2637691
_Ifu_7	.1721885	.0296773	-10.21	0.000	.1228277	.2413858
_Ifu_8	.1590114	.0288005	-10.15	0.000	.1114954	.2267773
_Ifu_9	.1249973	.0255734	-10.16	0.000	.0837051	.1866592
_Ifu_10	.1283071	.0262516	-10.04	0.000	.0859201	.1916047
_Ifu_11	. 1014386	.0234413	-9.90	0.000	.0644911	.1595536
_Ifu_12	.116598	.0257727	-9.72	0.000	.0756037	.1798207
_Ifu_13	.0729516	.0206757	-9.24	0.000	.0418591	.1271391
_Ifu_14	.0660909	.0202967	-8.85	0.000	.0362022	.1206559
_Isex_2	.5652917	.0384597	-8.38	0.000	.4947217	.6459282
papillary	. 4969893	.0322153	-10.79	0.000	.4376947	.5643164