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� Participants in the course Biostatistics III are expected to have prerequisite knowledge
equivalent to the learning outcomes of the courses Biostatistics I and Biostatistics II.
In particular, participants should be comfortable interpreting the output from logistic
regression models and we expect course participants to understand:

1. how to interpret regression coefficients after fitting a logistic regression

2. assessing confounding in a modelling framework

3. assessing effect modification (interactions) in a modelling framework

4. how to conduct a formal hypothesis tests (Wald and likelihood ratio tests) in a mod-
elling framework

� This document contains a self-assessment test of the key concepts you are expected to un-
derstand prior to the course. Brief answers are provided at the end of this document. If
you have difficulty with any questions we recommend you consult previous course notes
and/or course texts book or consult a colleague.

� The questions are typical of exam questions from earlier biostatistics courses and the marks
(in brackets) reflect the level of difficulty. If you attempt the test under examination condi-
tions (i.e., without referring to the answers) we would recommend:

1. if you score 70% or more then you possess the required prerequisite knowledge;

2. if you score 40%-–70% you should brush up on the areas where you lost marks;

3. if you score less than 40% you should, at a minimum, undertake an extensive review of
central concepts in statistical modelling and possibly consider studying intermediate-
level courses (e.g., Biostatistics II) before taking Biostatistics III.

� Questions about this test should be addressed to Mark Clements (mailto:mark.clements@
ki.se) via e-mail.

All questions are based on data from a cohort study designed to study risk factors for
incidence of coronary heart disease (CHD). We will study three exposures of interest, body
mass index (BMI), job type (3 categories) and energy intake (classified as high or low and where
high is considered exposed). The R output shown on this page is not central to the question but
is shown for completeness. The output below shows how a variable for BMI has been created
and how job type and energy intake are coded. The data are available on the web (see the use
statement below) so it is possible for you to reproduce all analyses shown in this document.
There is also a do file available (https://biostat3.net/download/self-assessment.R).

We have analysed the data using logistic regression, which is not completely appropriate given
that these data are from a cohort study where individuals were at risk for different amounts
of time. For the purpose of this exercise you should interpret the results from the models as if
logistic regression was appropriate. During Biostatistics III we will reanalyse these data using
more appropriate methods (e.g., Cox regression and Poisson regression).
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> library(foreign)

## function to calculate odds ratios (exponential form)

> eform <- function (object) {

exp(cbind("exp(coef)" = coef(object), confint.default(object)))

}

> diet <- read.dta("https://biostat3.net/download/stata/Labs%26Solutions/data/diet.dta")

## Generate a variable containing BMI

> diet <- transform(diet, bmi=weight/(height/100)^2)

> summary(diet$bmi)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

15.88 21.59 24.11 24.12 26.50 33.29 5

> table(diet$job)

driver conductor bank

102 84 151

> table(diet$hieng)

low high

155 182

We now estimate a logistic regression model where the outcome is CHD (0 = No CHD 1 =
CHD) and the exposures are coded as described above.

## Model 1

> model1 <- glm(chd ~ hieng + job + bmi, data=diet, family=binomial)

> summary(model1)

Call:

glm(formula = chd ~ hieng + job + bmi, family = binomial, data = diet)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.8889 -0.6028 -0.4794 -0.4068 2.3551

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.62891 1.32946 -2.730 0.00634 **

hienghigh -0.78827 0.33700 -2.339 0.01933 *

jobconductor 0.58399 0.44335 1.317 0.18777

jobbank 0.15623 0.39868 0.392 0.69515

bmi 0.07945 0.05225 1.521 0.12834

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 263.47 on 331 degrees of freedom

Residual deviance: 255.69 on 327 degrees of freedom

(5 observations deleted due to missingness)

AIC: 265.69

Number of Fisher Scoring iterations: 5
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> eform(model1)

exp(coef) 2.5 % 97.5 %

(Intercept) 0.02654522 0.001960413 0.3594389

hienghigh 0.45463158 0.234856575 0.8800685

jobconductor 1.79317539 0.752036418 4.2756945

jobbank 1.16909719 0.535168740 2.5539388

bmi 1.08269320 0.977310034 1.1994398

1. (1 mark) Interpret the estimated odds ratio for BMI, including a comment on statistical
significance.

2. (2 marks) Is it possible to ascertain, using the output on this page, whether the effect
of high energy intake is modified by BMI? If so, comment on whether the effect of high
energy intake is modified by BMI. If not, describe how you could study this.

3. (1 mark) Both P-values for the parameters representing the effect of occupation are greater
than 0.1. Does this mean that there is no evidence of a statistically significant overall
association between occupation and CHD risk? If not, how could you test whether there
is an association between occupation and CHD risk?

4. (1 marks) What is the estimated odds ratio for individuals working as bankers compared
to conductors?

5. (1 mark) Individuals with a high energy intake ( ≥ 2750 kcals/day) appear to have a
statistically significant lower risk of CHD compared to individuals with a low energy intake
( < 2750 kcals/day). Should we recommend individuals with a low energy intake to eat
more as a means of reducing CHD risk?

We now fit another model (labelled model 2).

## Model 2

> model2 <- glm(chd ~ hieng + bmi, data=diet, family=binomial)

> summary(model2)
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Call:

glm(formula = chd ~ hieng + bmi, family = binomial, data = diet)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.7739 -0.5865 -0.4827 -0.4229 2.2956

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.98008 1.21973 -2.443 0.0146 *

hienghigh -0.75899 0.33403 -2.272 0.0231 *

bmi 0.06159 0.05035 1.223 0.2213

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 263.47 on 331 degrees of freedom

Residual deviance: 257.56 on 329 degrees of freedom

(5 observations deleted due to missingness)

AIC: 263.56

Number of Fisher Scoring iterations: 4

> eform(model2)

exp(coef) 2.5 % 97.5 %

(Intercept) 0.05078865 0.00465085 0.5546271

hienghigh 0.46813905 0.24324747 0.9009515

bmi 1.06352566 0.96357659 1.1738422

6. (1 marks) Based on model 2, among individuals with a BMI of 24, what is the estimated
odds ratio for individuals with a high energy compared to those with a low energy intake?
You do not have to comment on statistical significane.

7. (2 marks) Based on model 2, what is the estimated odds ratio for individuals with a BMI
of 30 compared to individuals with a BMI of 25? Is the difference statistically significant?

8. (2 marks) Is it possible to ascertain, using the output from models 1 and/or 2, whether
the effect of high energy intake is modified by job type? If so, comment on whether the
effect of high energy intake is modified by job type. If not, describe how you could study
this.
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9. (2 marks) Is it possible to ascertain, using the output from models 1 and/or 2, whether
the effect of high energy intake is confounded by job type? If so, comment on whether
the effect of high energy intake is confounded by job type. If not, describe how you could
study this.

10. (3 marks) Based on models 1 and/or 2, is there any evidence that job type is associated
with CHD incidence? Conduct a formal hypothesis test using output from models 1
and/or 2. You should state the null hypothesis, alternative hypothesis, value of a test
statistic, assumed distribution of the test statistic under the null hypothesis, the name of
the statistical test you are using, and a comment on statistical significance.

We now reuse model 1, but report the estimated coefficients rather than the estimated odds
ratios. We will label this Model 3 even though it is technically the same model as Model 1 but
with estimates presented on a different scale.

## Model 3

> model3 <- model1

> summary(model3)

Call:

glm(formula = chd ~ hieng + job + bmi, family = binomial, data = diet)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.8889 -0.6028 -0.4794 -0.4068 2.3551

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.62891 1.32946 -2.730 0.00634 **

hienghigh -0.78827 0.33700 -2.339 0.01933 *

jobconductor 0.58399 0.44335 1.317 0.18777

jobbank 0.15623 0.39868 0.392 0.69515

bmi 0.07945 0.05225 1.521 0.12834

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 263.47 on 331 degrees of freedom

Residual deviance: 255.69 on 327 degrees of freedom

(5 observations deleted due to missingness)

AIC: 265.69

Number of Fisher Scoring iterations: 5

11. (2 marks) What is the standard error and 95 percent confidence interval of the estimate
for hieng? That is, what are the numbers indicated by X, Y and Z? You may make use of
output from models 1–2 in your answer.
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12. (1 mark) What is the interpretation of the intercept (i.e., the coefficient labelled (Intercept))?

> model4 <- glm(chd ~ hieng*job + bmi, data=diet, family=binomial)

> summary(model4)

Call:

glm(formula = chd ~ hieng * job + bmi, family = binomial, data = diet)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.8669 -0.6019 -0.4865 -0.3956 2.3974

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.51644 1.36411 -2.578 0.00994 **

hienghigh -0.96949 0.65116 -1.489 0.13652

jobconductor 0.46260 0.57680 0.802 0.42255

jobbank 0.07198 0.51302 0.140 0.88842

bmi 0.07768 0.05252 1.479 0.13914

hienghigh:jobconductor 0.29458 0.88619 0.332 0.73958

hienghigh:jobbank 0.21684 0.82026 0.264 0.79151

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 263.47 on 331 degrees of freedom

Residual deviance: 255.58 on 325 degrees of freedom

(5 observations deleted due to missingness)

AIC: 269.58

Number of Fisher Scoring iterations: 5

> eform(model4)

exp(coef) 2.5 % 97.5 %

(Intercept) 0.02970487 0.002049705 0.4304908

hienghigh 0.37927458 0.105848046 1.3590162

jobconductor 1.58819688 0.512777999 4.9190280

jobbank 1.07463303 0.393164419 2.9372855

bmi 1.08078028 0.975054654 1.1979698

hienghigh:jobconductor 1.34256502 0.236379979 7.6253532

hienghigh:jobbank 1.24214121 0.248863632 6.1998404

13. (2 marks) What is the OR of high energy intake compared to low for the 3 different job
types?

14. (3 marks) Based on models 3 and/or 4, is there any evidence of statistically significant effect
modification? Conduct a formal hypothesis test using output from models 3 and/or 4. You
should state the null hypothesis, alternative hypothesis, value of a test statistic, assumed
distribution of the test statistic under the null hypothesis, the name of the statistical test
you are using, and a comment on statistical significance.
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Solutions

1. After adjusting for total energy intake (in two categories) and job type (in three categories)
it is estimated that the odds of CHD incidence increases by a factor of 1.08 (8and every 1
unit increase in BMI.

2. No it is not possible. That would require evaluating if there is an interaction between en-
ergy intake and BMI. This can be done by refitting the model with the relevant interaction
term and subsequently performing a likelihood ratio test or a Wald test for that effect.
Our decision on whether or not effect modification exists should then be based on the size
and statistical significance of the interaction effect as well as knowledge of the underlying
biology/physiology.

3. The p-values for the parameters representing the effect of occupation represent the pairwise
comparison and we should not make a conclusion based on those tests alone. In order to
test for a global (overall effect) occupation on CHD risk we could conduct a joint test of
the two parameters representing occupation, e.g., a likelihood ratio test or a Wald test
(see question 10).

4. The OR is given by 1.169
1.793 = 0.652

5. No, we should always be wary of interpreting associations as causal effects. In this specific
case we would expect the association to be confounded by, for example, level of physical
activity.

6. OR = 0.468. The OR is assumed to be the same within any level of BMI since the model
does not account for possible effect modification.

7. OR = (1.064)5 = 1.364. The effect is not statistically significant (the scale that is used,
i.e. a one unit increase or a five unit increase does not affect the significance).

8. No it is not possible to assess effect modification based on the results from model 1 and/or
2. In order to do so we would need to include an interaction term between high energy
intake and attained age.

9. There is no formal test for testing for confounding. If the effect of high energy was con-
founded by job type we would expect to see a substantial difference in the OR representing
the effect of energy intake if we include job type in the model compared to when it is left
out. The OR for energy intake goes from 0.468 to 0.455 so there is no convincing evidence
of confounding by job type.

10. We can perform a likelihood ratio test by testing the null hypotheses that the 2 parameters
representing the effect of job type are 0 against the alternative hypothesis that at least one
of parameters is non-zero. That is, we test whether the likelihood for the more elaborate
model is statistically greater than the likelihood for the reduced model. The test statistic
is: D : −2(lnL(submodel) − lnL(fullmodel)) = −2(−128.78+ 127.84724) = 1.86552 Under the
null hypothesis, the test statistic follows a χ2 distribution with 2 df (the difference in the
number of parameters between the two models). The critical value of a χ2 with 2 degrees
of freedom is 5.99 at the 5% significance level. Since our test statistic is less than the
critical value we conclude that there is no evidence that job type is statistically significant.

In R

> anova(model2, model1, test="Chisq")

Analysis of Deviance Table

7



Model 1: chd ~ hieng + bmi

Model 2: chd ~ hieng + job + bmi

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 329 257.56

2 327 255.69 2 1.8655 0.3935

11. We can retrieve the standard error from model 1 my taking the log of the confidence limits,
i.e. Y = -1.44817 and Z = -0.127833. The standard error is thus given by −0.788−(−1.44817)

1.96 =
0.336821 by re-organizing the formula for how to calculate .e.g. the lower confidence limit
and solving for the standard error.

12. The constant represents the log(odds) for an individual where all covariates are at their
reference level (i.e., for a driver with low energy intake and BMI = 0). The constant does
not always make any sense in practice (as in this case). We can nevertheless calculate
exp(−3.63) = 0.027. This is the estimated odds of CHD for a driver with low energy
intake and BMI of zero. The estimated odds of CHD for a driver with low energy intake
and BMI of 25 is given by exp(−3.63 + 25× 0.079) = 0.19.

13. For drivers the OR = 0.379, for conductors the OR = 0.379 × 1.343 = 0.509 and for
bankers the OR = 0.379 × 1.242 = 0.471

14. Use a likelihood ratio test as in Question 10. The test statistic is 0.12 which follows a χ2

distribution with 2 df. We conclude that there is no evidence of a statistically significant
interaction.
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