
Solutions, Biostat III exam, 19 Dec 2012

Section 1

1. (a) After adjusting for total energy intake (in two categories) and job type (in three cat-
egories) it is estimated that the odds of CHD incidence increases by a multiplicative
factor of 1.08 (i.e., by 8%) for each and every 1 unit increase in BMI. The effect is not
statistically significant (CI contains 1 and p-value is 0.13).

(b) The p-values for the parameters representing the effect of occupation indicate the sig-
nificance of the pairwise comparison between each occupation and the reference and we
should not make a conclusion regarding the overall effect based on those tests alone. In
order to test for a global (overall effect) of occupation on CHD risk we could conduct a
joint test of the two parameters representing occupation, e.g., a likelihood ratio test or
a Wald test.

It’s possible, for example, that the outcome (e.g., odds) in the reference category is
intermediate to the other two categories such that the two pairwise comparisons are
not significant but the overall test is. This, however, is not highly likely. It’s rather
common, however, to see one or more statistically significant pairwise comparisons while
the overall test is not significant. In short, one should not use the pairwise p-values to
make inference about the overall effect.

(c) OR = 0.468. The OR is assumed to be the same within any level of BMI since the
model does not account for possible effect modification.

(d) OR = (1.064)5 = 1.364. The effect is not statistically significant since the p-value is
0.221. Note that changing the scale, i.e., a one unit increase or a five unit increase does
not affect the significance.

(e) There is no formal test for confounding. If the effect of high energy was confounded by
job type we would expect to see a substantial difference in the OR representing the effect
of energy intake if we include job type in the model compared to when it is left out.
The OR for energy intake goes from 0.468 to 0.455 so there is no convincing evidence
of confounding by job type.

(f) For drivers the OR = 0.379, for conductors the OR = 0.379 × 1.343 = 0.509 and for
bankers the OR = 0.379 × 1.242 = 0.471
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(g) We can perform a likelihood ratio test by testing the null hypotheses that the 2 interac-
tion parameters are 0 against the alternative hypothesis that at least one of parameters
is non-zero. That is, we test whether the likelihood for the more elaborate model (model
3) is statistically greater than the likelihood for the reduced model (model 1). The test
statistic is:

D : −2(lnL(model 1) − lnL(model 3)) = −2(−127.85 + 127.79) = 0.12

Under the null hypothesis, the test statistic follows a χ2 distribution with 2 df (the
difference in the number of parameters between the two models). The critical value of a
χ2 with 2 degrees of freedom is 5.99 at the 5 % significance level. Since our test statistic
is considerably less than the critical value we conclude that there is no evidence that
the effect of high energy is modified by job type.

Note that Stata reports, for each model, a LR test comparing the model to the so-called
null model (the model with only one parameter). For model 3 this is labelled LR chi(6)

and is a joint test of the significance of the additional 6 parameters in model 3 compared
to the null model. We note that there is no evidence that this model provides a better
fit to the data than the null model (where we assume everyone has the exact same
odds of CHD). Mathematically, the test statistic is calculated as the negative of twice
the difference between the log likelihood for model 3 and the log likelihood for the null
model. If we take the difference (without multiplying by 2) between this test statistic
for model 3 and the corresponding test statistic for model 1 then we have an expression
that is equivalent to the LR test comparing models 3 and 1. That is, the test statistic
can be calculated as 7.89 − 7.77 = 0.12
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Section 2

2. (a) In choosing to fit this model we have effectively reduced the data set to two rows, males
with 120 deaths in 3500 person-years and females with 110 deaths in 4000 person-years.

β̂0 is the log rate for males which is equal to ln (120/3500) = ln(0.034) = −3.37

β̂1 is the log rate ratio (females/males) which is equal to ln 110/4000
120/3500 = ln (0.802) = −0.22

You could also argue as follows:

When X = 0 we have ln(λ) = β0 implying β0 = ln (120/3500) = −3.37

When X = 1 we have ln(λ) = β0 + β1 implying β0 + β1 = ln (110/4000) = −3.59

Therefore, β0 = −3.37 and β1 = −3.59 − (−3.37) = −0.22

(b) The predicted rate for males is assumed to be the same for both age groups, since we
have not adjusted for age, and is equal to 120/3500. The predicted number of deaths is
therefore 1500 × 120/3500 = 51.4

(c) The parameter estimates will be unchanged since we are fitting the same model to the
same data (although presented in a different manner).

(d) We would expect the parameter estimates to change since we are now adjusting for the
effect of time.

(e) β̂′
1 will remain unchanged since it represents the change in the log rate for a one unit

change in sex. That is, the effect of sex is the same in both models and is represented
by both β̂1 and β̂′

1.

β̂′
0 will be different since it represents the log rate when X ′

sex = 0. In model 1, Xsex = 0
corresponded to males whereas in the new coding males have value 1 so X ′

sex = 0 will
correspond to something else (without a simple interpretation).

In the new coding there are three values of X ′
sex that are of interest, namely 0 (the

reference), 1 (males), and 2 (females). Since the rate for females is lower than the rate
for males, and X ′

sex is modelled as a linear effect, the rate for X ′
sex = 0 will be higher

than the rate for X ′
sex = 1. Therefore, β̂′

0 will be higher than β̂0.

You were not required to provide the values of the parameter estimates but they are:

Model 1: ln(λ) = −3.37 − 0.22Xsex

Model 1A: ln(λ) = −3.15 − 0.22X ′
sex

That is, in model 1 the log rate for males is −3.37 (the intercept) whereas in model 1A
it is −3.15 − 0.22 = −3.37.

[1 mark for explaining why β̂′
1 is unchanged; 1 mark for explaining why β̂′

0 will change;
and 1 mark for correctly describing the direction of change]

(f) β2 represents the log HR for age. Older individuals have a higher rate for both males

and females so the HR will be greater than 1. Therefore β̂2 will be greater than zero.

(g) We are modelling 4 data points with 4 parameters (i.e., a saturated model) so the
model will fit the data perfectly. The predicted number of deaths will be the same as
the observed number of deaths, namely 90.

(h) S(t) = exp(−∆(t)) where S(t) is the probability of surviving and ∆(t) the cumulative
hazard. If we assume the rate is constant then the cumulative hazard after 2 years will
be 2 × 30/2000 = 0.03. Therefore, S(t) = exp(−0.03) = 0.97

The probability that a young male survives 2 years is 0.97.
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An analysis of these data in Stata.

. list

+-----------------------------+

| sex age deaths pyears |

|-----------------------------|

1. | 1 0 30 2000 |

2. | 1 1 90 1500 |

3. | 2 0 20 2000 |

4. | 2 1 90 2000 |

+-----------------------------+

/* part (a) Sex coded as 1 for females and 0 for males (by specifying i.sex) */

. glm deaths i.sex, fam(poiss) lnoff(pyears) nolog

Generalized linear models No. of obs = 4

Optimization : ML Residual df = 2

Scale parameter = 1

Deviance = 99.31185829 (1/df) Deviance = 49.65593

Pearson = 95.17045454 (1/df) Pearson = 47.58523

Log likelihood = -61.03875361 BIC = 96.53927

--------------------------------------------------------------------------

| OIM

deaths | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-----------+--------------------------------------------------------------

2.sex | -.2205428 .1320009 -1.67 0.095 -.4792598 .0381743

_cons | -3.373027 .0912871 -36.95 0.000 -3.551946 -3.194107

ln(pyears) | 1 (exposure)

--------------------------------------------------------------------------

/* part (b) Predictions */

. predict fitted

+----------------------------------------+

| sex age deaths pyears fitted |

|----------------------------------------|

1. | 1 0 30 2000 68.57143 |

2. | 1 1 90 1500 51.42857 |

3. | 2 0 20 2000 55 |

4. | 2 1 90 2000 55 |

+----------------------------------------+

/* part (c) Sex coded as 2 for females and 1 for males */

. glm deaths sex, fam(poiss) lnoff(pyears) nolog

Generalized linear models No. of obs = 4

Optimization : ML Residual df = 2

Scale parameter = 1

Deviance = 99.31185829 (1/df) Deviance = 49.65593

Pearson = 95.17045454 (1/df) Pearson = 47.58523

Log likelihood = -61.03875361 BIC = 96.53927

--------------------------------------------------------------------------

| OIM

deaths | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-----------+--------------------------------------------------------------

sex | -.2205428 .1320009 -1.67 0.095 -.4792598 .0381743

_cons | -3.152484 .2059715 -15.31 0.000 -3.55618 -2.748787

ln(pyears) | 1 (exposure)

--------------------------------------------------------------------------
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3. (a) Under proportional hazards the residuals will be indpendent of time. It is difficult
to assess this from the plot so we typically fit a smooth line to the residuals. Under
proportional hazards, the smoothed line will be straight and have zero slope.

(b) Yes, your colleague has made a very sensible suggestion. In a stratified (by sex) Cox
model one has separate baseline hazards for males and females. There is no requirement
for the hazard for males to be proportional to the hazard for females. The effect of other
covariates are, however, assumed to be proportional to the sex-specific baselines.

5


