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Part 1

Some of the questions provided latitude in the analytical approach (e.g. 3(b)) and some of the questions
required interpretation (e.g. defining ’safe’ in 5(c)). As a general comment, it was important to provide
commentary on the results, where code and output were not sufficient to get full marks. Moreover, it
was important to define the notation used in the equations.

Initially, we (i) set the line size, (ii) change to the data folder, (iii) read in the dataset, (iv) create
categorical variables for PSA and age at study entry, and (v) save a copy of the file for use later.

. set linesize 80

. cd /home/marcle/repos/biostat3_2014/exam/2017
/home/marcle/repos/biostat3_2014/exam/2017

. import delimited "psa.csv", clear

(7 vars, 100,000 obs)

. egen psa_cat = cut(psa), at(0,1,2,3,10,17586) label
. egen age_cat = cut(start_age), at(50,60,70,80) label
. saveold psa, version(11l) replace

(saving in Stata 12 format, which Stata 11 can read)
file psa.dta saved

Question 1

If we consider the lower PSA categories, then 45.4% (95% CI: 45.0, 45.8) of those aged 50-59 years at
study entry have a PSA value less than 1 ng/mL; in contrast, 32.1% (95% CI: 31.6, 32.6) of those aged
60-69 years and 22.3% (95% CIL: 21.7, 23.0) of those aged 70-79 years have PSA < 1 ng/mL. Based
on the chi-square test, we find strong evidence for differences in the PSA categories by age categories,
although the small p-value may be also an indication of the large cell sizes. Note that the confidence
intervals for the proportions were not expected, but they would be useful for a description of the sample
for a scientific article.

. use psa, clear
. tab age_cat psa_cat, row chi

S +
| Key |
[—mmmmm e |
| frequency |
| row percentage |
S +
| psa_cat

age_cat | 0- 1- 2- 3- 10- | Total

___________ A e A

50- | 23,233 13,613 5,750 7,051 1,526 | 51,173

| 45.40 26.60 11.24 13.78 2.98 | 100.00

___________ O SO

60- | 10,072 7,666 4,173 7,386 2,096 | 31,393



| 32.08 24 .42 13.29 23.53 6.68 | 100.00
___________ P Sy
70- | 3,895 3,389 2,292 5,379 2,479 | 17,434

| 22.34 19.44 13.15 30.85 14.22 | 100.00
___________ Ut SO
Total | 37,200 24,668 12,215 19,816 6,101 | 100,000

| 37.20 24.67 12.21 19.82 6.10 | 100.00

Pearson chi2(8) = 7.5e+03 Pr = 0.000
. quietly capture tab psa_cat, gen(psa_cat)
. bysort age_cat: ci proportions psa_catl

-- Binomial Exact --
Variable | Obs Proportion Std. Err. [95% Conf. Intervall]
_____________ o e

psa_catl | 51,173 .454009 .0022009 .4496882 .458335

-> age_cat = 60-

-- Binomial Exact --
Variable | Obs Proportion Std. Err. [95% Conf. Intervall
_____________ o

psa_catl | 31,393 .3208359 .0026346 .315673 .3260319

-> age_cat = 70-

-- Binomial Exact --
Variable | Obs Proportion Std. Err. [95% Conf. Intervall]
_____________ o e

psa_catl | 17,434 .223414 .0031547 .2172489 .2296716

For the formal test for the association, we could also use a variety of other methods, including: non-
parametric tests on the PSA values; linear regression or analysis of variance for the log(PSA) values;
and binomial regression for a cut-point in PSA values. Some of these results are shown below. Note
that the long tail in the PSA values suggests using log(PSA) values; the assumption here is that the
measurement error is also on the log-scale. For these alternative approaches, they all provide strong
evidence that age at the initial PSA test is strongly associated with the PSA values. From the linear
regression, we estimate that a one year increase in age will lead to 4% increase in the PSA value.

. kwallis psa, by(age_cat)
at least two populations are required
r(498);

. capture drop ln_psa

. capture drop start_age_50

. gen start_age_50 = start_age - 50

. gen 1ln_psa = ln(psa)

. reg ln_psa i.age_cat, base

note: 1l.age_cat omitted because of collinearity

Source | SS daf MS Number of obs = 31,393
------------- e e __________  F(0, 31392) = 0.00
Model | 0 0 . Prob > F =



Residual | 47741.7414 31,392 1.5208251  R-squared = 0.0000

————————————— to-mmmmmeeeeeeeeeee-——-—-————————- Adj R-squared = 0.0000
Total | 47741.7414 31,392 1.5208251  Root MSE = 1.2332
1n_psa | Coef.  Std. Err. t P>|t| [95% Conf. Interval]
_____________ A e

age_cat |

60- | 0 (omitted)

I
_cons | .5682677 .0069602 81.65 0.000 .5546254 .58191
. display "Proportional change in PSA values compared with 50-59 years: " exp(.

> 3688477) " and " exp(.7930282) " for those aged 60-69 years and 70-79 years,

> respectively."

Proportional change in PSA values compared with 50-59 years: 1.4460674 and 2.210
> 0789 for those aged 60-69 years and 70-79 years, respectively.

. reg In_psa start_age_50, base

Source | SS df MS Number of obs = 31,393
------------- e F(1, 31391) = 280.10
Model | 422.232067 1 422.232067 Prob > F = 0.0000
Residual | 47319.5093 31,391 1.50742281 R-squared = 0.0088
------------- +---ooeeeeeeeee---———————-—-——----- Adj R-squared = 0.0088
Total | 47741.7414 31,392 1.52082561 Root MSE = 1.2278
1n_psa | Coef.  Std. Err. t P>|t| [95% Conf. Interval]
_____________ o e
start_age_50 | .0407087  .0024324 16.74 0.000 .0359412 .0454763
_cons | .0023887 .0345144 0.07 0.945 -.0652608 .0700382

. display "Proportional change in PSA per unit change in start age: " exp(.0407
> 052)
Proportional change in PSA per unit change in start age: 1.041545

. capture drop psa_ge_10

. gen psa_ge_10 = (psa>=10)

. logit psa_ge_10 i.age_cat, nolog base or
note: l.age_cat omitted because of collinearity

Logistic regression Number of obs = 31,393
LR chi2(0) = 0.00
Prob > chi2 = .
Log likelihood = -7697.3549 Pseudo R2 = 0.0000
psa_ge_10 | Odds Ratio  Std. Err. z P>|z| [95% Conf. Interval]
_____________ e

age_cat |

60- | 1 (omitted)

I

cons | .0715432 .0016176 -116.65 0.000 .0684419 .0747849



Question 2

We then restrict the dataset and stset the dataset for time since study entry. We note that one
individual has an age of prostate cancer diagnosis and age of death that precedes the age of study entry;
that individual should be excluded from the analyses in Parts 1 and 2.

. use psa, clear

. keep if start_age>=50 & start_age<70 & psa<3
(35,493 observations deleted)

. stset age_dx, fail(event_dx==1) origin(start_age)

failure event: event_dx ==
obs. time interval: (origin, age_dx]
exit on or before: failure
t for analysis: (time-origin)
origin: time start_age

64507 total observations
1 observation ends on or before enter()
64506 observations remaining, representing
2908 failures in single-record/single-failure data
713493.27 total analysis time at risk and under observation
at risk from t = 0
earliest observed entry t 0
last observed exit t = 12.65369

. list if age_dx < start_age

T +

48357. | id | start_"e | age_dx | event_dx | age_dth | event_"h |
| 76042 | 55 | 21.98011 | 0 | 21.98011 | 2 |
|- oo |
| psa | psa_cat | age_cat | _st | _d | _origin | _t | _tO |
| .5194139 | 0- | 50- | 0 | | 55 | |
e +

. drop if age_dx < start_age
(1 observation deleted)

(a)

Using Poisson regression to model the rate of prostate cancer incidence by age and PSA categories,
we can use streg, poisson or glm commands. All three approaches should give the same estimates.
For men with PSA below 3 ng/mL, there was some evidence that men aged 60-69 years had slightly
higher incidence rates than men aged 50-59 years (incidence rate ratio (IRR) = 1.08, 95% CI: 1.00,
1.16, p=0.06). There was much stronger evidence that the incidence rates rose with increasing PSA
categories: compared with men whose initial PSA value was less than 1 ng/mL, men with values between
1 and 2 ng/mL had an IRR of 2.79 (95% CI: 2.54, 3.08; p<0.001), and men with PSA values between
2 and 3 ng/mL had 6.09 times the incidence rate (95% CI: 5.52, 6.71; p<0.001).

. use psa, clear

. keep if start_age>=50 & start_age<70 & psa<3
(35,493 observations deleted)

. stset age_dx, fail(event_dx==1) origin(start_age)

failure event: event_dx ==
obs. time interval: (origin, age_dx]
exit on or before: failure

t for analysis: (time-origin)



origin: time start_age

64507 total observations
1 observation ends on or before enter()
64506 observations remaining, representing
2908 failures in single-record/single-failure data
713493.27 total analysis time at risk and under observation
at risk from t =
earliest observed entry t

.65369

64,506

1447 .12
0.0000

Intervall

1.160861

3.079851
6.713378

last observed exit t = 12
. streg i.age_cat i.psa_cat, dist(exp) base nolog
failure _d: event_dx ==
analysis time _t: (age_dx-origin)
origin: time start_age
Exponential regression -- log relative-hazard form
No. of subjects = 64,506 Number of obs =
No. of failures = 2,908
Time at risk = 713493.2702
LR chi2(3) =
Log likelihood = -12646.774 Prob > chi2 =
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf.
_____________ A e
age_cat |
50- | 1 (base)
60- | 1.076608 .0413881 1.92  0.055 .9984693
|
psa_cat |
0- | 1 (base)
1- | 2.794569 .1385949 20.72 0.000 2.535713
2- | 6.089436 .3030691 36.30 0.000 5.523484
|
cons | .0016795 .0000695 -154.37  0.000 .0015487

.0018214

. testparm i(1 2).psa_cat

(1) [_tll.psa_cat =0

(2) [_t]2.psa_cat =0
chi2( 2) = 1329.04
Prob > chi2 = 0.0000

. poisson _d i.age_cat i.psa_cat if _st==1, exposure(_t) nolog irr base

64,506
1447 .12
0.0000
0.0541

Poisson regression Number of obs =
LR chi2(3) =

Prob > chi2 =

Log likelihood = -12646.774 Pseudo R2 =
4 | IRR  Std. Err. z P>|z]| [95% Conf.

Intervall



+
age_cat |
50- | 1 (base)
60- | 1.076608 .0413881 1.92 0.055 .9984693 1.160861
|
psa_cat |
0- | 1 (base)
1- | 2.794573 .1385951 20.72  0.000 2.535716 3.079855
2- | 6.089444 .3030697 36.30 0.000 5.52349 6.713386
|
_cons | .0016795 .0000695 -154.37 0.000 .0015487 .0018214
In(_t) | 1 (exposure)

. capture drop 1ln_pt

. gen 1ln_pt = 1n(_t) if _st==1

(1 missing value generated)

. glm _d i.age_cat i.psa_cat if _st==1, family(poisson) offset(ln_pt) nolog efo
> rm base

Generalized linear models No. of obs = 64,506
Optimization : ML Residual df = 64,502
Scale parameter = 1
Deviance = 19477.54726 (1/df) Deviance = .3019681
Pearson = 212182.7134 (1/df) Pearson =  3.289552
Variance function: V(u) = u [Poisson]
Link function : glu) = In(w [Log]
AIC = .3922356
Log likelihood = -12646.77363 BIC = -694850.7
| 0IM
_d | IRR Std. Err z P>|z]| [95% Conf. Intervall
_____________ o e
age_cat |
50- | 1 (base)
60- | 1.076608 .0413881 1.92 0.055 .9984693 1.160861
|
psa_cat |
0- | 1 (base)
1- | 2.794573 .1385951 20.72 0.000 2.535716 3.079855
2- | 6.089444 .3030696 36.30 0.000 5.52349 6.713386
|
_cons | .0016795 .0000695 -154.37 0.000 .0015487 .0018214
1n_pt | 1 (offset)

We could also have used poisson or glm without using stset. This was a common cause of errors,
either due to not including person-time in the analysis (such that the analysis was for counts and not
for rates), or using the wrong person-time (e.g. using the age at diagnosis as the person-time). The
individual with their diagnosis preceding their initial PSA value could cause problems here and should
be excluded. The output is the same as before.

. use psa, clear

. keep if start_age>=50 & start_age<70 & psa<3
(35,493 observations deleted)

. drop if age_dx < start_age

(1 observation deleted)



capture drop person_time
. gen person_time = age_dx - start_age

. poisson event_dx i.age_cat i.psa_cat, exposure(person_time) nolog irr base

Poisson regression Number of obs = 64,506
LR chi2(3) = 1447 .12
Prob > chi2 = 0.0000
Log likelihood = -12646.774 Pseudo R2 = 0.0541
event_dx | IRR Std. Err z P>|z]| [95% Conf. Interval]
_____________ A o e e
age_cat |
50- | 1 (base)
60- | 1.076608 .0413881 1.92 0.055 .9984693 1.160861
|
psa_cat |
0- | 1 (base)
1- | 2.794573 .1385951 20.72  0.000 2.535716 3.079855
2- | 6.089444 .3030697 36.30 0.000 5.52349 6.713386
|
_cons | .0016795 .0000695 -154.37 0.000 .0015487 .0018214
I

1n(person~e) 1 (exposure)

. capture drop ln_pt

. gen 1ln_pt = ln(person_time)

. glm event_dx i.age_cat i.psa_cat, family(poisson) offset(ln_pt) nolog eform b
> ase

Generalized linear models No. of obs = 64,506
Optimization : ML Residual df = 64,502
Scale parameter = 1
Deviance = 19477.54726 (1/df) Deviance = .3019681
Pearson = 212182.7134 (1/df) Pearson =  3.289552
Variance function: V(u) = u [Poisson]
Link function : g(u) = In(w [Log]
AIC = .3922356
Log likelihood = -12646.77363 BIC = -694850.7
| 0IM
event_dx | IRR Std. Err. z P>|z]| [95% Conf. Intervall]
_____________ o e
age_cat |
50- | 1 (base)
60- | 1.076608 .0413881 1.92 0.055 .9984693 1.160861
|
psa_cat |
0- | 1 (base)
1- | 2.794573 .1385951 20.72 0.000 2.535716 3.079855
2- | 6.089444 .3030696 36.30 0.000 5.52349 6.713386
|
_cons | .0016795 .0000695 -154.37 0.000 .0015487 .0018214
1n_pt | 1 (offset)



(b)

To assess the interactions, we fit three models. First, we fit a main effects model and store the estimates.
We use quietly because the printed output is not used here. Second, we fit an interaction model to
assess the size of the interactions. We then compare the first and second models for a formal test for
interaction. Similarly, we use a Wald test to test for an interaction. Third, we re-parameterise the effects
so that we can more easily describe the interactions. From these models, we find that there is strong
evidence for an interaction, although the likelihood-ratio and Wald p-values are difficult to interpret
due to the large cell sizes. There is clear evidence that the differences between PSA categories vary by
age categories: for men aged 50-59 years, the incidence rate ratios for 1-2 and 2-3 ng/mL compared
with 0-1 ng/mL are 3.48 (95% CI: 3.07, 3.94) and 7.79 (95% CI: 6.86, 8.83), respectively; in contrast,
for men aged 60-69 years, the same IRRs were 1.89 (95% CI: 1.62, 2.21) and 4.03 (95% CI: 3.46, 4.69),
respectively.

. use psa, clear

. keep if start_age>=50 & start_age<70 & psa<3

(35,493 observations deleted)

. quietly stset age_dx, fail(event_dx==1) origin(start_age)
. quietly streg i.age_cat i.psa_cat, dist(exp) base nolog

. quietly est store base

. streg i.age_cat##i.psa_cat, dist(exp) base nolog

failure _d: event_dx ==

analysis time _t: (age_dx-origin)

origin: time start_age

Exponential regression -- log relative-hazard form
No. of subjects = 64,506 Number of obs = 64,506
No. of failures = 2,908
Time at risk = 713493.2702
LR chi2(5) = 1494.40
Log likelihood = -12623.134 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. z P>|z]| [95% Conf. Intervall]
_____________ S
age_cat |
50- | 1 (base)
60- | 1.772385 . 1424837 7.12 0.000 1.514011 2.074851
I
psa_cat |
0- | 1 (base)
1- | 3.480924 .2215444 19.60 0.000 3.072696 3.943388
2- | 7.785864 .5020712 31.83 0.000 6.861469 8.834796
I
age_cat#|
psa_cat |
60-#1- | .5435565 .0553788 -5.98 0.000 .4451663 .6636929
60-#2- | .5175907 .0521871 -6.53 0.000 L4247784 .6306821
I
cons | .0014023 .0000731 -126.03  0.000 .0012661 .0015531
. lrtest base
Likelihood-ratio test LR chi2(2) = 47.28
(Assumption: base nested in .) Prob > chi2 = 0.0000

. testparm il.age_cat#i(l 2).psa_cat



(1) [_tlil.age_cat#l.psa_cat = 0

(2) [_tll.age_cat#2.psa_cat =0
chi2( 2) = 48.48
Prob > chi2 = 0.0000

. streg i.age_cat i.age_cat#i.psa_cat, dist(exp) base nolog

failure _d: event_dx ==

analysis time _t: (age_dx-origin)

origin: time start_age

Exponential regression -- log relative-hazard form
No. of subjects = 64,506 Number of obs = 64,506
No. of failures = 2,908
Time at risk = 713493.2702
LR chi2(5) = 1494.40
Log likelihood = -12623.134 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err z P>|z]| [95% Conf. Intervall]
_____________ o
age_cat |
50- | 1 (base)
60- | 1.772385 .1424837 7.12 0.000 1.514011 2.074851
I
age_cat#|
psa_cat |
50-#1- | 3.480924 .2215444 19.60 0.000 3.072696 3.943388
50-#2- | 7.785864 .5020712 31.83 0.000 6.861469 8.834796
60-#1- | 1.892079 .1505279 8.02 0.000 1.618901 2.211354
60-#2- | 4.029891 .3123558 17.98 0.000 3.461918 4.691046
|
cons | .0014023 .0000731 -126.03 0.000 .0012661 .0015531

For the first interaction model above, the regression equation is:

log(A(tlpsa_cat,age cat)) = Bo + B1I(age_cat =760 — )+
BaI(psa_cat="1-")+
Bsl(psa_cat =72 —=")+
Bal(psa_cat ="1—-"&age cat =760 —")+
BsI(psa_cat =72 —" & age cat =760 —")

where A(t|psa_cat,age cat) is the prostate cancer incidence rate at time ¢ given psa_ cat and age_ cat,
B are the regression parameters for k = 0,...,5, and I() are indicator functions.
For the second interaction model above, the regression equation is:

log(A(t|psa_cat,age cat)) = Bo + B1I(age_cat =760 — )+

Bal(psa_cat =7"1—"&age cat ="50—")+

Bsl(psa_cat =72 —" & age cat =750 — ")+

Bal(psa_cat ="1—="&age cat =760 —")+
)

BsI(psa_cat =72 —" & age_cat =760 —"



(d)
Although not asked for, we can use the regression equation in (c¢) to define the rate equation for a man
aged 62 years with a PSA value of 1.1 ng/mL: exp(fy + 81 + 52 + S4). We can calculate the predicted

rate by hand from the fitted model. We can also obtain a 95% confidence interval using the lincom
command. We find that the predicted incidence rate is 4.70 per 1000 person-years (95% CI: 4.26, 5.20).

. streg i.age_cat##i.psa_cat, dist(exp) base nolog nohr

failure _d: event_dx ==
analysis time _t: (age_dx-origin)

origin: time start_age

Exponential regression -- log relative-hazard form
No. of subjects = 64,506 Number of obs = 64,506
No. of failures = 2,908
Time at risk = 713493.2702
LR chi2(5) = 1494 .40
Log likelihood = -12623.134 Prob > chi2 = 0.0000
_t | Coef. Std. Err. z P>|z| [95% Conf. Intervall
_____________ A o e
age_cat |
50- | 0 (base)
60- | .572326 .080391 7.12  0.000 .4147626 .7298894
|
psa_cat |
0- | 0 (base)
1- | 1.247298 .0636453 19.60 0.000 1.122555 1.37204
2- | 2.05231 .064485 31.83 0.000 1.925922 2.178698
|
age_cat#|
psa_cat |
60-#1- | -.6096216 .1018824 -5.98 0.000 -.8093074  -.4099358
60-#2- | -.6585705 .1008269 -6.53 0.000 -.8561877  -.4609534
|
cons | -6.569647 .0621286 -126.03  0.000 -6.671817  -6.467477

. display exp(-6.569647+.572326+1.247298+-.6096216)
.00470258
. lincom _cons+il.age_cat+il.psa_cat+il.age_cat#l.psa_cat, eform

(1) [_tll.age_cat + [_t]ll.psa_cat + [_t]ll.age_cat#l.psa_cat + [_t]_cons = 0O

_t | exp(b)  Std. Err. z P>|z| [95% Conf. Interval]

1 .0047026 .000239 -105.44  0.000 .0042566 .0051952

(e)

The formula for the risk calculation is 1 — exp(—j\t). We can use the confidence interval for the rate A
with ¢ = 10. The code is quite simple:

. display 1-exp(-10%.0047026)
.04593741

10



. display 1-exp(-10%.0042566)
.04167279
. display 1-exp(-10%.0051952)
.05062556

To do this in code, it is simpler to not use eform option, as lincom only returns the estimate and
standard error, rather than the confidence interval. We re-run the lincom command and then use the
returned values to calculate the confidence interval:

. lincom _cons+il.age_cat+il.psa_cat+il.age_cat#l.psa_cat

(1) [_tll.age_cat + [_t]ll.psa_cat + [_t]l.age_cat#l.psa_cat + [_t]_cons = 0O

_t | Coef. Std. Err. z P>|z| [95% Conf. Intervall

(1) | -5.359645 .05608329 -105.44 0.000 -5.459276 -5.260014

. display "Ten-year risk: " l-exp(-exp(r(estimate))*10)
Ten-year risk: .04593717

. display "Lower: " l-exp(-exp(r(estimate)-1.96x*r(se))*10)
Lower: .04167308

. display "Upper: " 1l-exp(-exp(r(estimate)+1.96%*r(se))*10)
Upper: .05062594

11



Part 2

Question 3

(a)

We can read in the dataset, keep the rows required and stset the data for time to death, modelling
for prostate cancer death. In our plot of the Kaplan-Meier curves, we restrict the y-axis using the
ylabel option. From the first panel of the plot, we observe that the risk of prostate cancer death within
ten years is very low for PSA values less than 3 ng/mL. Moreover, the risk for men with PSA values
between 3 and 10 ng/mL is also comparatively low. The prostate cancer mortality risks for men with
a PSA above 10 ng/mL are substantial, with approximately 10% of men dying due to prostate cancer
by ten years. For men aged 60-69 years, there are only moderate competing risks, which are censored
in these Kaplan-Meier curve calculations. Following a student’s suggestion, we also plot the hazards
(second panel). We find evidence that the hazards are rising with time, although we are cautious in our
interpretation of the smoothed hazard curves.

. use psa, clear

. keep if start_age>=60 & start_age<70

(68,607 observations deleted)

. stset age_dth, fail(event_dth==1) origin(start_age)

failure event: event_dth ==
obs. time interval: (origin, age_dthl]
exit on or before: failure
t for analysis: (time-origin)
origin: time start_age

31393 total observations
0 exclusions
31393 observations remaining, representing
386 failures in single-record/single-failure data
343413.911 total analysis time at risk and under observation

at risk from t = 0
earliest observed entry t = 0
last observed exit t = 12.65369

. sts graph, by(psa_cat) ylabel(0.85(0.05)1) saving(q3al, replace)

analysis time _t: (age_dth-origin)

failure _d: event_dth ==

origin: time start_age
(file g3al.gph saved)
. sts graph, by(psa_cat) hazard saving(q3a2, replace)

failure _d: event_dth == 1

analysis time _t: (age_dth-origin)
origin: time start_age
(file g3a2.gph saved)
. graph combine qg3al.gph g3a2.gph
. graph export q3a.eps, replace
(file g3a.eps written in EPS format)
. * the following line is only needed on Linux

!'! convert -density 300 q3a.eps g3a.png

12



Kaplan—Meier survival estimates

Smoothed hazard estimates
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We could further complement this analysis by a description of the level for the survival curves. For
men with an initial PSA value that was 10 ng/mL or over, survival at five and ten years was 97.2% and
91.0%, respectively. For men with an initial PSA value between 3 and 10 ng/mL, ten-year survival was

99.3%.

. use psa, clear

. keep if start_age>=60 & start_age<70

(68,607 observations deleted)

. quietly stset age_dth, fail(event_dth==1) origin(start_age)
. sts list, by(psa_cat) at (5 10)

Survivor
Function

failure _d: event_dth == 1
analysis time _t: (age_dth-origin)
origin: time start_age
Beg.
Time Total Fail
0-
5 9245 5
10 7890 17
1-
5 7086 2
10 6138 14
2-
5 3913 4
10 3417 9
3-
5 6928 11
10 6014 33
10-
5 1908 58
10 1552 114

Std.

Error [95% Conf. Int.]
0.0002 0.9987 0.9998
0.0005 0.9961 0.9983
0.0002 0.9989 0.9999
0.0006 0.9961 0.9985
0.0005 0.9974 0.9996
0.0010 0.9941 0.9980
0.0005 0.9972 0.9991
0.0010 0.9911 0.9950
0.0037 0.9633 0.9779
0.0066 0.8958 0.9217



No

. use psa, clear
. keep if start_age>=60 & start_age<70

te:

Survivor function is calculated over full data and evaluated at
indicated times; it is not calculated from aggregates shown at left.

An alternative approach would be to use life-tables.

(68,607 observations deleted)

. quietly stset age_dth, fail(event_dth==1) origin(start_age)

. ltable _t _d, by(psa_cat) interval(1(1)10)

Beg.
Total

Deaths

[95% Conf.

Int.]

Interval
0 .
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10

10
0 .
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10

10
0 .
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10

10
0 .
1 2
2 3
3 4
4 5
5 6
6 7
7 8

10072
10067
9891
9718
9504
9244
8976
8722
8468
8181
7889

7666
7663
7546
7397
7250
7085
6902
6727
6535
6326
6137

4173
4171
4121
4067
3997
3912
3812
3730
3631
3530
3416

7386
7382
7291
7196
7074
6927
6742
6575
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101
111
3407

89

95
117
143
181
160
174

O O OO OO0 OO OoO O O O OO OO O K-~ [eleNeoNeolNeNeolNolNol i

O O O O O OO -

—_
Ny

.0000
.0000
.0000
.9998
.9995
.9994
.9988
.9986
.9981
.9975
.99564

.0000
.0000
.0000
.9999
.9997
.9992
.9990
.9984
.9979
.9976
.9944

.0000
.9998
.9993
.9993
.9990
.9985
.9982
.9974
.9974
.9966
.9913

.0000
.9997
.9997
.9990
.9985
.9979
.9968
.9951

O OO OO OO OoOOoOoOo O OO OO OO OO oo

O OO OO OO OOoOoOOo

O O O O O O oo

O OO O OO O O O o O OO O O O OO O OO O O OO o

O OO O O O o

.9992
.9987
.9986
.9978
.9975
.9969
.9961
.9933

.9990
.9989
.9981
.9979
.9971
.9965
.9961
.9915

.9983
L9977
L9977
.9974
.9967
.9963
.9952
.99562
.9941
.9864

.9989
.9989
.9980
.9972
.9965
.99562
.9932

O OO O O OO o

O OO O OO O O O = O OO O O O O

O OO O O O O

.9999
.9998
.9997
.9993
.9992
.9988
.9983
.9969

.0000
.9999
.9996
.9995
.9991
.9988
.9985
.9963

.0000
.9998
.9998
.9996
.9993
.9992
.9986
.9986
.9980
.9945

.9999
.9999
.9995
.9991
.9987
.9979
.9965



8 9 6390 5 198 0.9943 0.0009 0.9922 0.9959
9 10 6187 6 168 0.9934 0.0010 0.9911 0.9951
10 6013 37 5976 0.9812 0.0022 0.9763 0.9851
10-
0 . 2096 2 2 0.9990 0.0007 0.9962 0.9998
1 2 2092 13 22 0.9928 0.0019 0.9881 0.9957
2 3 2057 15 33 0.9855 0.0026 0.9793 0.9898
3 4 2009 11 34 0.9801 0.0031 0.9730 0.9853
4 5 1964 17 40 0.9715 0.0037 0.9633 0.9779
5 6 1907 25 40 0.9586 0.0044 0.9489 0.9665
6 7 1842 23 42 0.9465 0.0051 0.9357 0.9556
7 8 1777 18 45 0.9368 0.0055 0.9251 0.9467
8 9 1714 24 53 0.9235 0.0061 0.9107 0.9345
9 10 1637 24 62 0.9097 0.0066 0.8959 0.9218
10 . 1551 556 1496 0.8474 0.0102 0.8262 0.8662
(b)

We can compare the PSA categories using a log-rank test. For describing for the form of the association,
we can use the interpretation from (a). We can also interpret the pattern of observed versus expected
values, or, more directly, use Cox regression. From a Cox model with pca_cat as a categorical covariate,
we find strong evidence for the change in mortality risk by PSA categories. Note that the Cox regression
was not required here.

. sts test psa_cat

failure _d: event_dth ==

analysis time _t: (age_dth-origin)

origin: time start_age

Log-rank test for equality of survivor functions

| Events Events

psa_cat | observed expected
________ o
0- | 30 122.30
1- | 26 94 .54
2- | 22 52.44
3- | 81 92.19
10- | 227 24 .53
________ A o
Total | 386 386.00

chi2(4) = 1809.90

Pr>chi2 = 0.0000

. stcox i.psa_cat, nolog

failure _d: event_dth ==

analysis time _t: (age_dth-origin)
origin: time start_age

Cox regression -- no ties
No. of subjects 31,393 Number of obs = 31,393

No. of failures = 386
343413.9114

Time at risk
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LR chi2(4) = 799.72

Log likelihood =  -3528.6169 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall
_____________ A o e e
psa_cat |
1- | 1.120885 .3003368 0.43 0.670 .6629561 1.895122
2- | 1.709692 .4798985 1.91 0.056 .9862606 2.963768
3- | 3.58108 .7653739 5.97 0.000 2.355533 5.44426
10- | 37.74785 7.33327 18.69 0.000 25.79464 55.24017
(c)

We can use the sts 1list command to estimate the risks. The ten-year risks for those aged 60-69 years
for PSA categories 0-, 1-, 2-, 3-9 and 10+ ng/mL were 0.25% (95% CI: 0.17, 0.39), 0.24% (95% CI: 0.15,
0.39), 0.34% (95% CT: 0.20, 0.59) and 9.0% (95% CI: 7.8, 10.4) respectively.

. sts list, by(psa_cat) at (5 10) fail

failure _d: event_dth ==

analysis time _t: (age_dth-origin)
origin: time start_age

Beg. Failure Std.
Time Total Fail Function Error [95% Conf. Int.]
0-
5 9245 5 0.0005 0.0002 0.0002 0.0013
10 7890 17 0.0025 0.0005 0.0017 0.0039
1-
5 7086 2 0.0003 0.0002 0.0001 0.0011
10 6138 14 0.0024 0.0006 0.0015 0.0039
2
5 3913 4 0.0010 0.0005 0.0004 0.0026
10 3417 9 0.0034 0.0010 0.0020 0.0059
3-
5 6928 11 0.0015 0.0005 0.0009 0.0028
10 6014 33 0.0067 0.0010 0.0050 0.0089
10-
5 1908 58 0.0285 0.0037 0.0221 0.0367
10 1552 114 0.0903 0.0066 0.0783 0.1042

Note: Failure function is calculated over full data and evaluated at indicated
times; it is not calculated from aggregates shown at left.

A variety of other approaches would be used here, including life-tables, direct rate calculations and
Poisson regression. Given evidence for a changing hazard, it would be sensible to split for time rather
than assuming a constant hazard. Splitting at five years, we can use Poisson regression and nlcom using
the following code:

. use psa, clear

. quietly keep if start_age>=60 & start_age<70

. quietly stset age_dth, fail(event_dth==1) origin(start_age) id(id)
. quietly stsplit fuband, at(0(5)15)

. streg i.fuband if psa_cat==4, dist(exp) nolog base

failure _d: event_dth ==
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analysis time _t: (age_dth-origin)

origin: time start_age
id: id

Exponential regression -- log relative-hazard
No. of subjects 2,096

No. of failures = 227
Time at risk 22183.74759

Log likelihood = -833.14411
_t | Haz. Ratio Std. Err z
_____________ o
fuband |
0 | 1 (base)
5 | 2.289127 .3692051 5.13
10 | 2.820484 .5308447 5.51
|
cons | .0057385 .0007535 -39.30

. nlcom 1-exp(-(exp(_b[_cons])*5+exp(_b[_cons]+_b[5.fuband])*5))

_nl_1: 1-exp(-(exp(_b[_cons])*5+exp(_b[_cons]+_b[5.fuband])*5))

_t | Coef. Std. Err. z

_____________ A

_nl_1 | .0900566 .0065639 13.72

Question 4

(a)

Fitting the Cox regression model with main effects for age and PSA, we find that age is strongly
associated with prostate cancer mortality, with men aged 60-69 years having 7.38 (95% CI: 4.55, 11.97)
times the prostate cancer mortality compared with those aged 50-59 years. For PSA categories, taking
a reference group for those with an initial PSA of between 0 and 1 ng/mL, there was no significant
difference in mortality for those with a PSA between 1 and 2 ng/mL (rate ratio (RR) = 1.12; 95% CI:
0.70, 1.80), although the number of events was small, as represented by the wider confidence intervals;
for those with a PSA value between 2 and 3 ng/mL, the risk was higher (RR = 1.86, 95% CI: 1.14,

3.03).

. use psa, clear

. keep if start_age>=50 & start_age<70 & psa<3

(35,493 observations deleted)

form
Number of obs = 5,554
LR chi2(2) = 40.29
Prob > chi2 = 0.0000
P>|z| [95% Conf. Intervall
0.000 1.668717 3.140199
0.000 1.950377 4.078765
0.000 .0044364 .0074227
P>|z| [95% Conf. Intervall
0.000 .0771915 .1029216

. quietly stset age_dth, fail(event_dth==1) origin(start_age)

. drop if age_dth < start_age
(1 observation deleted)
. stcox i.age_cat i.psa_cat, nolog base

failure _d: event_dth ==

analysis time _t: (age_dth-origin)

origin: time start_age

Cox regression -- no ties
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No. of subjects = 64,506 Number of obs = 64,506
No. of failures = 99
Time at risk = 725128.7179
LR chi2(3) = 95.81
Log likelihood = -1032.7654 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. z P>|z]| [95% Conf. Intervall]
_____________ o e
age_cat |
50- | 1 (base)
60- | 7.379064 1.821191 8.10 0.000 4.549046 11.96967
|
psa_cat |
0- | 1 (base)
1- | 1.124633 .2685629 0.49 0.623 .7042771 1.795884
2- | 1.862285 .4630303 2.50 0.012 1.143951 3.031692

(b)

For the given dataset, there are several time scales of interest. First, we could consider time from the
PSA test, which may be related to the time to the next PSA test, and hence to diagnosis, treatment and
survival. However, for the men with PSA below 3 ng/mL, the time course to next PSA test is unclear.
If we model for time since test, we then assume that the shape of the baseline hazard is the same for
all groups. Calculations of survival and risks are simpler when we use this as the primary time scale.
Second, we could adjust for attained age as the primary time scale. This is possibly a good choice, as
age is closely related to prostate cancer mortality. The form of question (a) suggests that start age is
categorical, but either time scale could be appropriate. We also provide code using attained age as the
primary time scale. We see that the results comparing PSA categories are similar to those using time
since test as the primary time scale. Third, in another dataset, we could possibly have used calendar
period as the time scale, although changes in calendar period would generally be less than age or time
since PSA test.

. stset age_dth, fail(event_dth==1) entry(start_age)

failure event: event_dth == 1
obs. time interval: (0, age_dth]
enter on or after: time start_age
exit on or before: failure

64506 total observations
0 exclusions
64506 observations remaining, representing
99 failures in single-record/single-failure data
725128.718 total analysis time at risk and under observation
at risk from t =
earliest observed entry t = 50
last observed exit t 81.6323

(|
o

. stcox i.psa_cat, nolog base

failure _d: event_dth ==

analysis time _t: age_dth

enter on or after: time start_age

Cox regression -- no ties
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No. of subjects = 64,506 Number of obs = 64,506
No. of failures = 99
Time at risk = 725128.7179
LR chi2(2) = 4.58
Log likelihood = -946.36737 Prob > chi2 = 0.1014
_t | Haz. Ratio Std. Err. z P>|z]| [95% Conf. Intervall]
_____________ A o e e
psa_cat |
0- | 1 (base)
1- | 1.066148 .2545572 0.27 0.788 .6677001 1.702367
2- | 1.685212 .4187237 2.10 0.036 1.035516 2.742534

(c)

For the Cox model in 4 (a),
A(tlage cat,psa_cat) = o(t) exp(B1l(age cat =760 —") + B2l(psa_cat =71 —") + Bsl(psa_cat ="2 "))

This uses the same notation as in 2 (c¢), with the extension that A\g(t) is the baseline hazard function
for psa_cat =70 —" and age cat ="50 —".

(d)

Risk(t = 10lage _cat =760 —”,psa_cat ="1 —") = Sy(t = 10)HF(age=62.PSA=1Y) _ g/ (3 — j0)exp(fi+52)

where 31 and j, are the regression parameters in 2 (c).

(e)
This answer assumes that 3 (c) was answered using the Kaplan-Meier estimator. The answer would
change if another method had been used for 3 (c).

For 3 (c), survival and risks were calculated using the Kaplan-Meier estimator. For 4 (d), the risk
is calculated from the Cox model, combining the hazard ratio with the Breslow estimator of baseline
survival. These two approaches are closely related, where both assume a non-parametric baseline sur-
vival. The Kaplan-Meier curves are calculated separately for each stratum or group, with no modelling
across strata or groups. The Cox model includes a model for the covariates, providing an opportunity
to estimate risks for smaller groups under the assumption that the model holds. A Cox model stratified
by both age and PSA categories would give the same as the Kaplan-Meier estimators.

(f)
As suggested by some of the students, we could first check whether there is any evidence for time-

dependence using Schoenfeld residuals. These tests suggest no evidence for non-proportionality for
either age or PSA categories.

. use psa, clear

. keep if start_age>=50 & start_age<70 & psa<3

(35,493 observations deleted)

. quietly stset age_dth, fail(event_dth==1) origin(start_age) id(id)
. quietly tab psa_cat, gen(psa_cat)

. quietly stcox i.age_cat i.psa_cat, nolog

. estat phtest, detail

Test of proportional-hazards assumption

Time: Time
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|
____________ o e
Ob.age_cat | . . 1 .
1.age_cat | -0.12656 1.60 1 0.2060
Ob.psa_cat | . . 1 .
1.psa_cat | -0.03177 0.10 1 0.7518
2.psa_cat | -0.03362 0.11 1 0.7364
____________ o e
global test | 1.84 3 0.6060

Note that the numbers of prostate cancer deaths are not large, particularly in the first five years.
Using (i) time-splitting at five years, we calculate indicators for splitting and use the indicators in the
Cox model. The stsplit command takes care of the left truncation and event indicators. The hazard
ratios for the time-varying effects are not individually significant and the Wald test also suggests no
time-varying effects (p=0.83).

. use psa, clear

. keep if start_age>=50 & start_age<70 & psa<3

(35,493 observations deleted)

. stset age_dth, fail(event_dth==1) origin(start_age) id(id)

id: id
failure event: event_dth ==
obs. time interval: (age_dth[_n-1], age_dth]
exit on or before: failure
t for analysis: (time-origin)
origin: time start_age

64507 total observations
1 observation ends on or before enter()
64506 observations remaining, representing
64506 subjects
99 failures in single-failure-per-subject data
725128.718 total analysis time at risk and under observation
at risk from t 0
earliest observed entry t = 0
last observed exit t 12.65369

. quietly tab psa_cat, gen(psa_cat)

. stsplit timeband, at(0,5,100)

(60,769 observations (episodes) created)

. gen timebandb5 = timeband==5

. stcox i.age_cat i.psa_cat c.psa_cat2#c.timebandb c.psa_cat3#c.timeband5, nolo

> 8

failure _d: event_dth ==

analysis time _t: (age_dth-origin)
origin: time start_age

id: id
Cox regression -- no ties
No. of subjects = 64,506 Number of obs = 125,275
No. of failures = 99
Time at risk = 725128.7179
LR chi2(5) = 96.19
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Log likelihood =

Prob > chi2 =

age_cat
60-

psa_cat
1-
2-

c.psa_cat2#]|

c.timebandb

c.psa_cat3#]|

c.timebandb

-1032.5763
| Haz. Ratio Std. Err
+
|
| 7.379604 1.821329
|
|
| .8321468 .6077836
| 2.109579 1.415804
|
| 1.402602 1.083939
|
| .8659628 .6251042

-0.25
1.11

0.44

-0.20

0.662

0.842

4.549374

.1988379
.5661454

.3084046

.2104024

11.97056

3.482578
7.860746

6.378932

3.564083

. testparm c.psa_cat2#c.timebandb c.psa_cat3#c.timebandb

( 1) c.psa_cat2#c.timeband5 = 0

( 2) c.psa_cat3#c.timeband5 = 0
chi2( 2) = 0.36

Prob > chi2 = 0.8332

The code is simpler if we undertake a similar analysis using the texp and tvc options:

. use psa, clear

. keep if start_age>=50 & start_age<70 & psa<3

(35,493 observations deleted)

. quietly stset age_dth, fail(event_dth==1) origin(start_age) id(id)

. quietly tab psa_cat, gen(psa_cat)

. stcox i.age_cat i.psa_cat, nolog tvc(psa_cat2 psa_cat3) texp(_t >=

failure _d:
analysis time _t:

event_dth ==
(age_dth-origin)

origin: time start_age
id: id
Cox regression -- no ties
No. of subjects = 64,506
No. of failures = 99

Time at risk

Log likelihood

725128.7179

Number of

LR chi2(5)

obs

Prob > chi2 =

5)

64,506

96.19
0.0000

age_cat
60-

psa_cat
1-
2-

= -1032.5763
| Haz. Ratio  Std. Err
+
|
|
| 7.379604 1.821329
[
|
| .8321468 .6077836
| 2.109579 1.415804

8.10

-0.25
1.11

21

0.000

0.801
0.266

4.549374

.1988379
.5661454

11.97056

3.482578
7.860746



1.402602 1.083939 0.44 0.662 .3084046 6.378932
.8659628 .6251042 -0.20 0.842 .2104024 3.564083

psa_cat?2
psa_cat3

Note: Variables in tvc equation interacted with _t>=5.
. test ([tvclpsa_cat2=0) ([tvc]lpsa_cat3=0)

(1) [tvclpsa_cat2 =0

( 2) [tvclpsa_cat3 =0
chi2( 2) = 0.36
Prob > chi2 = 0.8332

For a continuous time-varying effect under (ii), we can also use the texp and tvc options. Again,
there was no evidence for a time-varying effect.

. use psa, clear

. keep if start_age>=50 & start_age<70 & psa<3

(35,493 observations deleted)

. quietly stset age_dth, fail(event_dth==1) origin(start_age) id(id)
. quietly tab psa_cat, gen(psa_cat)

. stcox i.age_cat i.psa_cat, nolog tvc(psa_cat2 psa_cat3) texp(_t)

failure _d: event_dth ==
analysis time _t: (age_dth-origin)
origin: time start_age

id: id
Cox regression -- no ties
No. of subjects = 64,506 Number of obs = 64,506
No. of failures = 99
Time at risk = 725128.7179
LR chi2(5) = 96.05
Log likelihood = -1032.6439 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
main |
age_cat |
60- | 7.381746 1.82195 8.10 0.000 4.550583 11.97433
|
psa_cat |
1- | 1.491879 1.166488 0.51 0.609 .3222445 6.906873
2- | 2.631034 2.124173 1.20 0.231 .5406374 12.80403
_____________ o
tve |
psa_cat2 | .9676291 .0839432 -0.38 0.704 .8163304 1.146969
psa_cat3 | .9604461 .0863422 -0.45 0.653 .8052889 1.145498

Note: Variables in tvc equation interacted with _t.
. test ([tvclpsa_cat2=0) ([tvc]lpsa_cat3=0)

(1) [tvclpsa_cat2 =0
( 2) [tvclpsa_cat3 =0
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0.24
0.8862

chi2( 2)
Prob > chi2

Changing the time scale to attained age, we again found no evidence for a linearly time-varying
effect (p=0.50).

. use psa, clear

. keep if start_age>=50 & start_age<70 & psa<3

(35,493 observations deleted)

. quietly stset age_dth, fail(event_dth==1) entry(start_age) id(id)
. quietly tab psa_cat, gen(psa_cat)

. stcox i.psa_cat, nolog tvc(psa_cat2 psa_cat3) texp(_t-60)

failure _d: event_dth ==
analysis time _t: age_dth
enter on or after: time start_age

id: id
Cox regression -- no ties
No. of subjects 64,506 Number of obs = 64,506

No. of failures = 99
725128.7179

Time at risk

LR chi2(4) = 5.95

Log likelihood =  -945.68365 Prob > chi2 = 0.2033

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall

_____________ O
main |
psa_cat |

1- | 1.447093 .9009586 0.59 0.553 .4271097 4.902907

2- | 3.375659 2.153459 1.91 0.057 .9668195 11.78614

_____________ A o e
tve |

psa_cat2 | .9743253 .0468119 -0.54 0.588 .8867632 1.070534

psa_cat3 | .9431796 .0471376 -1.17 0.242 .8551724 1.040244

Note: Variables in tvc equation interacted with _t-60.
. test ([tvclpsa_cat2=0) ([tvc]lpsa_cat3=0)

(1) [tvclpsa_cat2 =0
( 2) [tvclpsa_cat3 =0
chi2( 2) = 1.37
Prob > chi2 = 0.5037

Finally, using stpm2, we again find no evidence of a time-varying effect.

. use psa, clear

. keep if start_age>=50 & start_age<70 & psa<3

(35,493 observations deleted)

. quietly stset age_dth, fail(event_dth==1) origin(start_age) id(id)

. quietly tab psa_cat, gen(psa_cat)

. Stpm2 i.age_cat i.psa_cat, tvc(psa_cat2 psa_cat3) dftvc(2) df(3) scale(hazard
> ) nolog base

Log likelihood = -692.12018 Number of obs = 64,506
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|

+

|

age_cat |

50- |
60- | 1

|

psa_cat |

0- |
1- | .

2- |

|

|

|

|

|

|

|

|

|

1

_rcsl
_rcs2
_rcs3
_rcs_psa_c”~21
_rcs_psa_c~22
_rcs_psa_c~31
_rcs_psa_c~32
_cons

-8

Coef. Std. Err.

0 (base)
.998929 .2468118

0 (base)
1301003 .261253
7558834 .2635744

.350218 .3070149
2412636 .1689149
0292311 .0230025
0347741 .4192894
0172805 .2135957
5562371 .3425757
.266076 .1840284
.081832 .2561783

o

-0.
0.
-1.
-1.
-31.

.10

P>|z| [95% Conf.
0.000 1.515186
0.618 -.3819463
0.004 .2392871
0.000 . 7484803
0.153 -.0898034
0.204 -.0743153
0.934 -.8565663
0.936 -.4013594
0.104 -1.227673
0.148 -.626765
0.000 -8.583932

2.482671

.6421468
1.27248

1.951956
.5723306
.01568563
.7870181
.4359204
.1151989
.094613
-7.579732

. testparm _rcs_psax

( 1) [xb]_rcs_psa_cat2l =
( 2) [xb]_rcs_psa_cat22 =
( 3) [xb]_rcs_psa_cat3l =
( 4) [xb]_rcs_psa_cat32 =

chi2( 4
Prob > chi

(g)

Fitting a stratified Cox model with strata for PSA categories, we find evidence that the prostate cancer
mortality rate is considerably higher in men aged 60-69 years compared with men aged 50-50 years
(HR=7.38, 95% CI: 4.55, 11.97). The un-stratified Cox model includes one baseline hazard that is
shared across the groups, while the stratified Cox model includes different baseline hazards for each
stratum (in this case, PSA categories). This is a useful approach to deal with non-proportionality by
PSA categories. However, given the lack of evidence for non-proportionality, the age effect is similar

across the two models.

. use psa, clear

0
0
0
0
) = 4.22
2 = 0.3773

. keep if start_age>=50 & start_age<70 & psa<3

(35,493 observation

s deleted)

. quietly stset age_dth, fail(event_dth==1) origin(start_age) id(id)
. stcox i.age_cat, nolog strata(psa_cat) base

failure _d:

analysis time _t:

origin:
id:

Stratified Cox regr.

No. of subjects
No. of failures =
Time at risk

event_dth == 1
(age_dth-origin)
time start_age
id

-- no ties
64,506

99
725128.7179
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LR chi2(1) = 84.55
Log likelihood =  -924.89875 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall
_____________ A o e e
age_cat |
50- | 1 (base)
60- | 7.381171 1.821808 8.10 0.000 4.550228 11.9734

Stratified by psa_cat

Question 5

()

We can define safety in terms of the levels of risk for prostate cancer incidence and prostate cancer
death. As an additional analysis, we provide Kaplan-Meier estimators of the five- and ten-year risks for
prostate cancer incidence and death by age and PSA categories (see Stata output and Table below).
This is a simple, non-parametric approach that avoids modelling.

For men aged 50-59 years, the ten-year risk for prostate cancer incidence increases rapidly by PSA
category, with approximately a 1% risk for PSA values below 1 ng/mL, 3% for PSA values between 1
and 2 ng/mL and 7% for PSA values between 2 and 3 ng/mL. The risks are considerably higher above
3 ng/mL because men are more likely to be referred to a urologist to undertake a biopsy to diagnose
the cancer. For men in this age group with a PSA below 3 ng/mL, the ten-year risks of prostate cancer
death are less than 0.1%. Interestingly, the ten-year risk of prostate cancer death among men with PSA
between 3 and 10 ng/mL is only 0.3%, which is in marked contrast to the 19% ten-year risk of prostate
cancer incidence. For men with a PSA value in excess of 10 ng/mL, the ten-year risk of prostate cancer
death is 1 in 20.

For men aged 60-69 years at their initial PSA test, the risks are higher. The ten-year risks of prostate
cancer diagnosis for men with PSA values between 0 and 1, 1 and 2, and 2 and 3 ng/mL are 2%, 4%
and 9%, respectively; for the same PSA categories, the ten-year risks of prostate cancer death are 0.3,
0.2 and 0.3%, respectively.

The question arises as to the level of risk that is acceptable for choosing between 5 and 10 yearly
re-testing. Is a ten-year risk of 0.3% acceptable for men in their 60s? As a working recommendation,
the prostate cancer mortality risks are low, suggesting that 5 or 10 year re-testing would be ’safe’.

Note, however, that our interpretation of these data depend on the population, which has had
moderately heavy testing. This issue is discussed further in the following question.

Age group (years) PSA category Ten-year risk of Ten-year risks of
8¢ group 1y (ng/mL) PC incidence (%) PC death (%)
50-59 0- 0.8 0.0
1- 2.8 0.0

2- 7.4 0.0

3- 18.7 0.3

10- 39.0 5.0

60-69 0- 2.3 0.3
1- 4.3 0.2

2- 9.4 0.3

3- 22.8 0.7

10- 42.0 9.0

. use psa, clear
. quietly stset age_dx, fail(event_dx==1) origin(start_age)
. sts list, by(age_cat psa_cat) at (5 10) fail

failure _d: event_dx ==

analysis time _t: (age_dx-origin)
origin: time start_age
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Beg. Failure Std.

Time Total Fail Function Error [95% Conf. Int.]

50- 0-
5 21966 67 0.0029 0.0004 0.0023 0.0037
10 19782 106 0.0080 0.0006 0.0069 0.0093

50- 1-
5 12918 61 0.0046 0.0006 0.0036 0.0059
10 11576 282 0.0275 0.0015 0.0248 0.0305

50- 2-
5 5394 131 0.0233 0.0020 0.0196 0.0276
10 4668 266 0.0738 0.0036 0.0671 0.0811

50- 3-
5 6260 536 0.0773 0.0032 0.0713 0.0839
10 5108 709 0.1860 0.0048 0.1769 0.1956

50- 10-
5 1219 245 0.1638 0.0096 0.1459 0.1835
10 818 317 0.3897 0.0129 0.3650 0.4156

60- 0-
5 9097 159 0.0161 0.0013 0.0138 0.0188
10 7711 62 0.0234 0.0016 0.0206 0.0267

60- 1-
5 7005 87 0.0118 0.0013 0.0096 0.0146
10 5886 204 0.0427 0.0025 0.0381 0.0478

60- 2-
5 3782 137 0.0338 0.0028 0.0286 0.0398
10 3096 222 0.0944 0.0048 0.0855 0.1042

60- 3-
5 6083 895 0.1241 0.0039 0.1167 0.1320
10 4655 677 0.2280 0.0051 0.2182 0.2381

60- 10-
5 1528 431 0.2120 0.0091 0.1949 0.2305
10 957 374 0.4204 0.0114 0.3983 0.4431

70- 0-
5 3289 94 0.0250 0.0026 0.0205 0.0306
10 2302 15 0.0304 0.0029 0.0252 0.0366

70- 1-
5 3028 31 0.0094 0.0017 0.0067 0.0134
10 2162 30 0.0208 0.0027 0.0162 0.0267

70- 2-
5 2025 43 0.0194 0.0029 0.0144 0.0260
10 1452 53 0.0487 0.0049 0.0399 0.0592

70- 3-
5 4483 373 0.0720 0.0036 0.0653 0.0794
10 3047 223 0.1247 0.0048 0.1155 0.1345

70- 10-
5 1737 386 0.1663 0.0078 0.1517 0.1822
10 933 247 0.3068 0.0105 0.2868 0.3279

Note: Failure function is calculated over full data and evaluated at indicated
times; it is not calculated from aggregates shown at left.

. quietly stset age_dth, fail(event_dth==1) origin(start_age)

. sts list, by(age_cat psa_cat) at (5 10) fail

failure _d: event_dth ==

analysis time _t: (age_dth-origin)
origin: time start_age
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Beg. Failure Std.

Time Total Fail Function Error [95% Conf. Int.]

50- 0-
5 22030 0 0.0000 . . .
10 19939 4 0.0002 0.0001 0.0001 0.0005

50- 1-
5 12978 1 0.0001 0.0001 0.0000 0.0005
10 11905 3 0.0003 0.0002 0.0001 0.0009

50- 2-
5 5523 0 0.0000 . . .
10 5038 4 0.0008 0.0004 0.0003 0.0020

50- 3-
5 6774 5 0.0007 0.0003 0.0003 0.0017
10 6251 16 0.0032 0.0007 0.0021 0.0049

50- 10-
5 1443 20 0.0134 0.0030 0.0087 0.0207
10 1285 52 0.0502 0.0058 0.0400 0.0628

60- 0-
5 9245 5 0.0005 0.0002 0.0002 0.0013
10 7890 17 0.0025 0.0005 0.0017 0.0039

60- 1-
5 7086 2 0.0003 0.0002 0.0001 0.0011
10 6138 14 0.0024 0.0006 0.0015 0.0039

60- 2-
5 3913 4 0.0010 0.0005 0.0004 0.0026
10 3417 9 0.0034 0.0010 0.0020 0.0059

60- 3-
5 6928 11 0.0015 0.0005 0.0009 0.0028
10 6014 33 0.0067 0.0010 0.0050 0.0089

60- 10-
5 1908 58 0.0285 0.0037 0.0221 0.0367
10 1552 114 0.0903 0.0066 0.0783 0.1042

70- 0-
5 3376 16 0.0045 0.0011 0.0027 0.0073
10 2382 28 0.0140 0.0021 0.0104 0.0188

70- 1-
5 3056 7 0.0022 0.0008 0.0010 0.0045
10 2206 15 0.0081 0.0017 0.0053 0.0122

70- 2-
5 2061 9 0.0042 0.0014 0.0022 0.0080
10 1518 23 0.0170 0.0030 0.0120 0.0241

70- 3-
5 4820 34 0.0067 0.0011 0.0048 0.0094
10 3463 106 0.0324 0.0027 0.0275 0.0381

70- 10-
5 2071 172 0.0730 0.0054 0.0632 0.0843
10 1316 199 0.1768 0.0085 0.1609 0.1941

Note: Failure function is calculated over full data and evaluated at indicated
times; it is not calculated from aggregates shown at left.

(b) The simplest answer here is that less testing would lead to fewer prostate cancer diagnoses,
where men with prostate cancer but without clinical symptoms would die due to other causes. Based
on the European Randomised Study of Prostate Cancer, we could expect that mortality would increase
by approximately 20% with no testing and prostate cancer incidence would be considerably lower.

The risks from (a) are estimated from a population with moderately intense PSA testing. The
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research question relates to the counterfactual were a man to not be tested, what would be the ten-year
risks? Under that counterfactual, we have under-estimated the risks of death by approximately 20%.

Various answers discussed the issue of lead-time bias, which is more of an issue with survival from
prostate cancer incidence to death, rather than mortality rates from an cohort with no previous diagnosis
of prostate cancer.

Question 6

The partial likelihood for a Cox regression model with a single covariate is

exp(fSz;)

L= s A e VA
ZjeRi exp(fBx;)

%

where i is an index for the events, j is an index for the risk set R; for event ¢, and z; and x; are
covariates.
For a nested case-control study, the likelihood for a single covariate is

exp(fz;)

L= H ZjeR; exp(fx;)

i

where 4 is an index for the events (or cases), j is an index for a sample of the risk R; (or controls) for
event (or case) i, and z; and z; are the covariates.

The difference in the formulations is the risk set: the full risk set is used for Cox regression, while
the nested case-control study only includes a sample of the risk set. The sampling from the risk set will
decrease the precision of the estimated regression parameters.

The odds ratio from the nested case-control study will estimate a hazard ratio.
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