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Topics for Day 4

Generalised survival models (aka flexible parametric models)
Non-collapsibility
Nested case-control studies
Standardised mortality (or incidence) ratios (SMR/SIR)
Some possible biases in survival analysis
Reporting on cohort studies
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Splines I

In Poisson regression the baseline hazard is estimated as a step function.
By fine splitting the steps can be made small and the baseline hazard
approximately continuous. The drawback is that it requires the estimation of
a lot of parameters.
One alternative would be to use splines.
Splines are a way of modeling continuous variables in a flexible way.
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Splines II
For cubic splines, we have piece-wise cubic functions for intervals defined by
so-called knots
For the knots, the user has to specify either

1 The number of knots (e.g. df=3), with automatic knots placement (e.g. by
quantiles of the event times);

2 The number and placement of the knots; or
3 Use some function that penalises the wiggliness of the function (so-called

penalised regression)
The user also has to specify the type of cubic splines

1 B-splines, which are cubic before the first knot and after the last knot (bs()
from the splines packages)

2 Natural splines, which are linear before the first knot and after the last knot
(ns())

3 Periodic splines
4 Cure models (flat after the last knot)
5 . . . ’

For some interactive examples, see
https://pclambert.net/interactivegraphs/spline_eg/spline_eg.
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Splines III
Given data and some knots: initially assume no constraints
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Splines IV
Now force the lines to join at knots
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Splines V
Now assume continuous first derivatives
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Splines VI

Now assume continuous first and second derivatives (B-splines)
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Generalised survival models (aka flexible parametric
survival models) I

We can use splines to model for the baseline hazard
One approach is to use Poisson regression and split finely for time. This
works particularly well for multiple time scales.
An alternative approach is to model for a transformation of survival – the
so-called generalised survival models or flexible parametric survival models.
The most common of these models is on the log cumulative hazard scale:

log(Λ(t|x)) = s(log t) + βT x

where s() is a smooth function (e.g. using natural splines) for log time.
One advantage of the cumulative hazard scale is that we can easily calculate
survival, such that S(t|x) = exp(−Λ(t|x))
We can calculate the hazard by differentiation, such that

λ(t|x) = Λ′(t|x) = Λ(t|x)s ′(log t)/t
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Generalised survival models (aka flexible parametric
survival models) II

For the log cumulative hazard scale, we have proportional hazards:

λ(t|x = x0 + 1)
λ(t|x = x0) = Λ(t|x = x0 + 1)s ′(log t)/t

Λ(t|x = x0)s ′(log t)/t

= exp(s(log t) + β(x0 + 1))
exp(s(log t) + β(x0))

= exp(β)

This is a proportional hazards model, but non-proportional hazards
(time-dependent effects) can be modeled by including interactions between
covariates and splines for time. For example

log(Λ(t|x)) = s(log t) + βT x +
∑

j
sj(log t)xj

where j is an index for the time-dependent effects.
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Generalised survival models (aka flexible parametric
survival models) III

We have implemented both parametric and penalised generalised survival
models in the rstpm2 package on CRAN (see also the flexsurv package on
CRAN and the stpm2 command in Stata)
The parametric models default to using natural splines for the smoothers by
time. The investigator needs to specify the degrees of freedom (e.g. df=3)
The penalised models do not need to specify the degrees of freedom. These
models are closely related to generalised additive models, which can also be
used with Poisson data.
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Generalised survival models (aka flexible parametric
survival models) IV
R code and output
> fit4 <- stpm2(Surv(surv_mm, status=="Dead: cancer") ~ sex + agegrp +

year8594,
data=colon, subset=(stage=="Localised"), df=5)

poisson poisson.fine coxph stpm2
sexFemale -0.0929661 -0.08887086 -0.08939142 -0.08951965
agegrp45-59 -0.0502813 -0.05248568 -0.05198489 -0.05439771
agegrp60-74 0.2959041 0.29043188 0.29237391 0.28887930
agegrp75+ 0.8280071 0.80925760 0.81414446 0.81392895
year8594Diagnosed 85-94 -0.2789378 -0.28137264 -0.28254077 -0.27401607
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Generalised survival models (aka flexible parametric
survival models) V

Hazard ratios are very similar to hazard ratios from a Cox model and Poisson
model.
Since the baseline hazard is modelled it is easy to include non-PH, interaction.
The time-scale is included as a continuous variable, more plausible than step
function.
Easy to present results using graphs.
The parametric approach enables predictions and extrapolations.

R code
known <- transform(colon,

distant=(stage=="Distant")+0,
regional=(stage=="Regional")+0,
stage=droplevels(stage,"Unknown"))

known <- subset(known, !is.na(stage))
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Generalised survival models (aka flexible parametric
survival models) VI

R code
fit <- stpm2(Surv(surv_mm/12, status=="Dead: cancer") ~ sex + regional + distant,

data=known, df=5, tvc=list(regional=3, distant=3))
plot(fit,type="hazard",newdata=data.frame(sex="Male",distant=1,regional=0),

xlab="Time since diagnosis (years)")
lines(fit,type="hazard",newdata=data.frame(sex="Male",distant=0,regional=1),

col=2, ci=TRUE)
lines(fit,type="hazard",newdata=data.frame(sex="Male",distant=0,regional=0),

col=3, ci=TRUE)
legend("topright", legend=levels(known$stage), lty=1, col=3:1, bty="n")
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Generalised survival models (aka flexible parametric
survival models) VII
R code: Time-dependent hazard ratios comparing distant with
localised colon cancer, males

plot(fit,type="hr",newdata=data.frame(sex="Male",distant=0,regional=0),
var="distant",
xlab="Time since diagnosis (years)", main="Linear y axis")
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Generalised survival models (aka flexible parametric
survival models) VIII

R code: Time-dependent survival differences comparing distant with
localised colon cancer, males

plot(fit,type="sdiff",newdata=data.frame(sex="Male",distant=0,regional=0),
exposed=function(data) transform(data,distant=1),
xlab="Time since diagnosis (years)", main="Distant vs localised")
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Generalised survival models (aka flexible parametric
survival models) IX

Time-dependent hazard differences comparing distant with localised colon cancer,
males

0 5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Distant vs localised

Time since diagnosis (years)

H
az

ar
d 

di
ffe

re
nc

e

0 5 10 15 20

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Regional vs localised

Time since diagnosis (years)

H
az

ar
d 

di
ffe

re
nc

e

Clements et al Biostatistics III, Day 4 4–13 November, 2024 17 / 79



Proportional hazards and unmeasured covariates I

What happens with proportional hazards models with unmeasured covariates?
Assume that two covariates X and U are independent (e.g. for a randomised
controlled trial, where X is the treatment effect and U are other covariates)
and that both affect survival S(t).
Intuitively, the initial events for the Cox model will be
randomised/independent, but later events are based on factors which affect
survival – which will lead to a bias
Consider the causal diagram for survival to time t and survival to time t + ∆
(adapted from Aalen et al [1]):

U

S(t) S(t + ∆)

X
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Proportional hazards and unmeasured covariates II
If we consider how X affects survival at time t or time t + ∆, then we do not
open the path through U and we can get a causal estimator for X :

U U

S(t) S(t + ∆)

X X

This suggests that survival differences (or ratios) can have a causal
interpretation
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Proportional hazards and unmeasured covariates III

As a reminder, the hazard between time t and time t + ∆ is conditional on
survival to time t. For hazard modelling, we have that:

U

S(t) S(t + ∆)

X

λ(t)

When modelling for the hazard and adjusting for X , we implicitly adjust for
S(t), which acts as a collider.
This opens the path from X → S(t)← U → S(t + ∆).
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Proportional hazards and unmeasured covariates

What happens with proportional hazards models with unmeasured covariates?
We consider the case when a covariate U is not associated with an exposure
of interest X .
A common approach in statistics and epidemiology is to start with a known
truth and then see whether we can estimate a known target parameter from
simulated data.
For our simulation: simulate for a binary exposure X and a normally
distributed covariate U; for simplicity, assume that the time to event T has
hazards that are constant over time (that is, exponential) and the rate varies
by X and U. Further assume that censoring C is uniform and independent of
T .
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Proportional hazards and unmeasured covariates
Given C and T , we can calculate the observed time Y and observed indicator ∆.
The directed acyclic graph is then:

X C

T (Y , ∆)

U

1

1

(Y , ∆) = (min(T , C), T < C)

where X is distributed as a Bernoulli variable with probability 0.5 (that is, a coin
flip), U is normally distributed with mean 0 and standard deviation 3, T is
exponentially distributed (that is, constant hazards with respect to time) with rate
exp(−5 + X + U), and C is uniformly distributed between 0 and 10.

Clements et al Biostatistics III, Day 4 4–13 November, 2024 22 / 79
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Simulation code

R code

set . seed (12345)
d <− l o c a l ({

n <− 1e4
x <− rbinom (n , 1 , 0 . 5 )
u <− rnorm (n , 0 , 3)
t <− rexp (n , exp(−5+x+u ) )
c <− r u n i f (n , 0 , 10)
y <− pmin ( t , c )
d e l t a <− ( t < c )
data . frame ( y , x , u , d e l t a )

})

For discussion:
How would you model with covariates x and u?
How would you model with covariate x , when u is unmeasured?
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Modelling for both x and u I

There are many proportional hazards models that include constant hazards,
including Poisson regression, Cox regression and flexible parametric survival
models:
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Modelling for both x and u II
R code and output

> f i t 1 <− glm ( d e l t a ~x+u+o f f s e t ( l og ( y ) ) , data=d ,
f am i l y=po isson )

> f i t 2 <− coxph ( Surv ( y , d e l t a )~x+u , data=d )
> f i t 3 <− stpm2 ( Surv ( y , d e l t a )~x+u , data=d , df =4)

> rb ind ( Po i s son=coef ( summary ( f i t 1 ) ) [ " x " , c ( " Es t imate " ,
" Std . E r r o r " ) ] ,

Cox=coef ( summary ( f i t 2 ) ) [ " x " , c ( " c o e f " , " se ( c o e f ) " ) ] ,
Stpm2=coef ( summary ( f i t 3 ) ) [ " x " , c ( " Es t imate " ,

" Std . E r r o r " ) ] )

Es t imate Std . E r r o r
Po i s son 0.9602659 0.04372345
Cox 0.9622728 0.04490412
Stpm2 0.9607498 0.04487831
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Modelling for both x and u III

In summary:
All three models estimate the target log hazard ratio for X (≈ 1).
The standard error for Poisson is similar to and slightly smaller than those for
Cox and stpm2
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Modelling for only x , without u I
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Modelling for only x , without u II
R code and output: Using the same model classes and excluding u
from the models

> f i t 1 <− glm ( d e l t a ~x+o f f s e t ( l og ( y ) ) , data=d ,
f am i l y=po isson )

> f i t 2 <− coxph ( Surv ( y , d e l t a )~x , data=d )
> f i t 3 <− stpm2 ( Surv ( y , d e l t a )~x , data=d , df =4)

> rb ind ( Po i s son=coef ( summary ( f i t 1 ) ) [ " x " , c ( " Es t imate " ,
" Std . E r r o r " ) ] ,

Cox=coef ( summary ( f i t 2 ) ) [ " x " , c ( " c o e f " , " se ( c o e f ) " ) ] ,
Stpm2=coef ( summary ( f i t 3 ) ) [ " x " , c ( " Es t imate " ,

" Std . E r r o r " ) ] )

Es t imate Std . E r r o r
Po i s son 0.5128869 0.04341441
Cox 0.4851147 0.04342341
Stpm2 0.4852363 0.04342328
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Modelling for only x , without u III

The marginal hazard ratio can be quite different to the conditional hazard
ratio from the previous models
As an exercise (see Exercise 14), we can investigate whether the hazard ratios
are time-varying for the stpm2 models with both x and u or with only x (see
next)
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Marginal and conditional time-varying hazard ratio for x

R code
> f i t <− stpm2 ( Surv ( y , d e l t a ) ~x+u , data=d , df =4, tvc= l i s t ( x =2))
> p l o t ( f i t , type=" hr " , newdata=data . frame ( x=0,u=0) , var=" x " ,

y l im=c ( 1 , 4 ) , main="Cond : Surv ( y , d e l t a ) ~x+u , \ nu=0" )
> f i t <− stpm2 ( Surv ( y , d e l t a ) ~x , data=d , df =4, tvc= l i s t ( x =2))
> p l o t ( f i t , type=" hr " , newdata=data . frame ( x =0) , var=" x " ,

y l im=c ( 1 , 4 ) , main=" Marg ina l : Surv ( y , d e l t a ) ~x " )
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Why is the marginal estimate different to the conditional
estimate?

The hazard ratio for X for the model with both x and u is conditional on the
values for u. For our example, the hazard ratio is constant with respect to
time.
The hazard ratio for X for the model with only x is marginal (or an average)
over the values for u. For our example, the hazard ratio starts close to exp(1)
and is then attenuated
If we fit a marginal model with a constant hazard ratio, we estimate an
average of the time-varying hazard ratio
Individuals with higher values of u and x are more likely to have an event
earlier, so that there is selection. At later times, the distributions of U and X
for the survivors are expected to have lower values.
For normally distributed unmeasured covariates U, theory says that the
marginal hazard ratio for X will be attenuated
The unmeasured covariate U (or unmeasured heterogeneity) is also called a
random effect, and exp(U) is called a statistical frailty
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Non-collapsibility of the hazard ratio

We would prefer to have a model which is collapsible, where the marginal
estimate without the unmeasured covariates is the same parameter as the
conditional estimate

A related example is for odds ratios, which are also not collapsible
To emphasise, we assumed that U was not a confounder for X .
Consequently, this issue is similar for both randomised controlled trials and
observational data.
We can reduce the attenuation by modelling for covariates that are not
confounders — but we shouldn’t need to do this!
For proportional hazards there are two conditions for HR ̸= 1 where the
non-collapsibility is negligible. . .

Clements et al Biostatistics III, Day 4 4–13 November, 2024 32 / 79



Simulation code: rare events

R code

set . seed (12345)
d <− l o c a l ({

n <− 1e4∗10 # CHANGED N
x <− rbinom (n , 1 , 0 . 5 )
u <− rnorm (n , 0 , 3)
t <− rexp (n , exp(−5+x+u ) )
c <− r u n i f (n , 0 , 10/1000) # CHANGED FROM 10 TO 0.01
y <− pmin ( t , c )
d e l t a <− ( t < c )
data . frame ( y , x , u , d e l t a )

})
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Modelling for only x , without u (rare events) I

Using the same model classes and excluding u from the models:

R code and output

> f i t 1 <− glm ( d e l t a ~x+o f f s e t ( l og ( y ) ) , data=d ,
f am i l y=po isson )

> f i t 2 <− coxph ( Surv ( y , d e l t a )~x , data=d )
> f i t 3 <− stpm2 ( Surv ( y , d e l t a )~x , data=d , df =4)
> rb ind ( Po i s son=coef ( summary ( f i t 1 ) ) [ " x " , c ( " Es t imate " ,

" Std . E r r o r " ) ] ,
Cox=coef ( summary ( f i t 2 ) ) [ " x " , c ( " c o e f " , " se ( c o e f ) " ) ] ,
Stpm2=coef ( summary ( f i t 3 ) ) [ " x " , c ( " Es t imate " ,

" Std . E r r o r " ) ] )

Es t imate Std . E r r o r
Po i s son 1.081150 0.1212037
Cox 1.081513 0.1212136
Stpm2 1.081399 0.1212136
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Simulation code: smaller frailty

R code

set . seed (12345)
d <− l o c a l ( {

n <− 1e4
x <− rbinom (n , 1 , 0 . 5 )
u <− rnorm (n , 0 , 1) # CHANGED SD FROM 3 TO 1
t <− rexp (n , exp(−5+x+u ) )
c <− r u n i f (n , 0 , 10)
y <− pmin ( t , c )
d e l t a <− ( t < c )
data . frame ( y , x , u , d e l t a )

})
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Modelling for only x , without u (smaller frailty) I

Using the same model classes and excluding u from the models:

R code and output

> f i t 1 <− glm ( d e l t a ~x+o f f s e t ( l og ( y ) ) , data=d ,
f am i l y=po isson )

> f i t 2 <− coxph ( Surv ( y , d e l t a )~x , data=d )
> f i t 3 <− stpm2 ( Surv ( y , d e l t a )~x , data=d , df =4)
> rb ind ( Po i s son=coef ( summary ( f i t 1 ) ) [ " x " , c ( " Es t imate " ,

" Std . E r r o r " ) ] ,
Cox=coef ( summary ( f i t 2 ) ) [ " x " , c ( " c o e f " , " se ( c o e f ) " ) ] ,
Stpm2=coef ( summary ( f i t 3 ) ) [ " x " , c ( " Es t imate " ,

" Std . E r r o r " ) ] )

Es t imate Std . E r r o r
Po i s son 0.9498227 0.07583196
Cox 0.9444216 0.07584759
Stpm2 0.9441747 0.07584672
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Summary (so far) I

Non-collapsibility is less of an issue with (i) rare events and (ii) a small frailty
Unfortunately, for single, unclustered events we cannot assess the size of the
frailty — modelling indirectly helps, but we still cannot characterise the
unmodelled frailty
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Approaches to address non-collapsibility I

First, we can use regression standardisation to calculate marginal effects from
the conditional model. This includes standardised hazard ratios (which look
similar to the marginal hazard ratios) and standardised survival differences
Standardised survival S̄(t) at time t is calculated by

S̄(t) =
∑

i
wiS(t|x i)

for covariate patterns indexed by i with weights wi and covariates x i . If we
standardise by the observed data, we have

S̄(t) =
n∑

i=1

1
nS(t|x i)

where i is an index over the observations.
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Approaches to address non-collapsibility II

We can estimate standardised survival under counterfactual exposures. For
example, we could define

S̄k(t) =
n∑

i=1

1
nS(t|ui , do(x = k))

which sets all observations to having x = k, and then the standardised
survival difference would be

S̄1(t)− S̄0(t) =
n∑

i=1

1
n (S(t|ui , do(x = 1))− S(t|ui , do(x = 0)))
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Survival differences

R code
f i t <− stpm2 ( Surv ( y , d e l t a ) ~x+u , data=d , df =4, tvc= l i s t ( x =2))
p l o t ( f i t , type=" s d i f f " , newdata=data . frame ( x=0,u=0) , var=" x " ,

y l im=c ( −0.15 ,0) , main="Cond : Surv ( y , d e l t a ) ~x+u , \ nu=0" )
p l o t ( f i t , type=" m e a n s u r v d i f f " , newdata=t rans fo rm ( d , x =0) , var=" x " ,

y l im=c ( −0.15 ,0) , main=" Stand : Surv ( y , d e l t a ) ~x+u" )
f i t <− stpm2 ( Surv ( y , d e l t a ) ~x , data=d , df =4, tvc= l i s t ( x =2))
p l o t ( f i t , type=" s d i f f " , newdata=data . frame ( x =0) , var=" x " ,

y l im=c ( −0.15 ,0) , main=" Marg ina l : Surv ( y , d e l t a ) ~x " )
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Hazard ratios
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Other approaches to address this non-collapsibility I
Second, we could use survival models that are collapsible
A popular choice has been Aalen’s additive hazards model, where (assuming
a continuous hazard)

λ(t|x) = λ0(t) +
∑

j
xjβj(t)

Although this is a hazards model, the linearity means that the marginal and
conditional models are similar for covariates that are not confounders.
The different exposures are assumed to act like competing events, similar to
Rothman’s causal pies, rather than proportionally. This additivity does not
seem to hold for some event types (e.g. cancer survival by age and sex).
These models are implemented in the timereg package on CRAN. The models
are reported using non-parametric, time-varying cumulative effects, such that

Λ(t|x) =
∫ t

0
λ(u|x)du =

∫ t

0
λ0(u)du +

∑
j

xj

∫ t

0
βj(u)du

This model does not hold for our simulated data.
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Other approaches to address this non-collapsibility II
An alternative approach, which shows considerable promise, is to use
accelerated failure time models, where T = T0 exp(−βx), which is
proportionality on the time scale.
We have recently developed smooth accelerated failure time models which
allow some flexibility in the baseline survival, such that

S(t|x) = S0(t exp(−βx))

for some flexible S0(t) (e.g. splines for rstpm2::aft).
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Other approaches to address this non-collapsibility III

Our simulated data, which are exponential, can also be fitted as an
accelerated failure time model:

R code
f i t . xu <− a f t ( Surv ( y , d e l t a ) ~x+u , data=d , df =4)
f i t . x <− a f t ( Surv ( y , d e l t a ) ~x , data=d , df =4)
r b i n d ( " Surv ( y , d e l t a ) ~x+u"=coe f ( summary ( f i t . xu ) ) [ " x " , c ( " Es t imate " ,

" Std . E r r o r " ) ] ,
" Surv ( y , d e l t a ) ~x "=coe f ( summary ( f i t . x ) ) [ " x " , c ( " Es t imate " ,

" Std . E r r o r " ) ] )

Estimate Std. Error
Surv(y,delta)~x+u -0.962349 0.04409720
Surv(y,delta)~x -1.036672 0.09105875

We see that the AFT model is collapsible.
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Likelihood calculations for the Cox model I

Estimation is based on the concept of risk sets. Understanding this is central
to understanding risk set sampling (e.g. nested case-control and case-cohort
studies) presented on slide 50.
The risk set at each failure time is the collection of subjects who were at risk
of failing at that time.
In theory, only one individual can fail at each failure time and we can calculate
the conditional probability of failure for the subject who actually failed.
The partial likelihood function is the product of these conditional
probabilities.
Imagine 5 individuals at risk at time t of which one fails.
These individuals have hazards λ1, λ2, . . . , λ5 which may be different since
the individuals have different covariate values.
Conditional on one of the five failing, the probability it is number 2 is

λ2
λ1 + λ2 + λ3 + λ4 + λ5
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Likelihood calculations for the Cox model II

Since λ(t) = λ0(t) exp(xβ) we can write this as

λ0(t) exp(x2β)
λ0(t) exp(x1β) + λ0(t) exp(x2β) + . . . + λ0(t) exp(x5β)

The baseline hazard, λ0(t), cancels and we have

exp(x2β)∑
i∈R exp(xiβ)

where R represents the risk set.
The likelihood function is the product of these conditional probabilities.
If we have J distinct failure times then

L(β) =
J∏

j=1

(
exp(xjβ)∑

i∈Rj
exp(xiβ)

)
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Likelihood calculations for the Cox model III

The likelihood function can be further generalised for K (potentially
time-dependent) covariates xi1(t), . . . , xiK (t)

L(β) =
J∏

j=1

 exp
(∑K

k=1 βkxjk(tj)
)

∑
i∈Rj

exp
(∑K

k=1 βkxik(tj)
)
 (1)

Note that these calculations do not depend on the underlying failure times;
only the ordering of failure times is important.
Although this is not a likelihood in the strict sense, it is a partial likelihood, it
can for all intents and purposes be treated as a likelihood.
In practice we often observe multiple failures at the same time (ties) and
need to use an approximation to equation 1.
Conceptually similar to a matched (on time) case-control study. Cox partial
likelihood is similar to the likelihood for conditional logistic regression (used
for analysing matched case-control studies).
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Sampling from the risk set: the nested case-control design I

When fitting the Cox model we essentially compare, at every failure time, the
characteristics of the individual who failed to the characteristics of all
individuals who did not fail (equation 1).
We could think of this as a case-control study matched on time; at each
failure time we have one case and several hundred (or more) controls.
We could instead select, for example, 5 controls per case with little loss of
efficiency.
Our controls are selected from the risk set; a single individual may be a
control at multiple time points and a control may later become a case.
This is a nested case-control design; a case-control study nested within a
cohort.
This design has become popular because it allows for statistically efficient
analysis of data from a cohort with substantial savings in cost and time.
We may wish, for example, to extract information from medical records for
the patients diagnosed with colon carcinoma in order to study additional
explanatory variables.
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Sampling from the risk set: the nested case-control design
II

This would be an ideal setting for a nested case-control design; we extract
information for all individuals who died but only a sample of those who did
not.
Another ideal application is where we establish a population-based cohort and
take blood samples with the aim of studying the association between
genotype and disease risk.
We store the blood samples and only after following up the cohort do we
analyse the samples for the cases (individuals who developed the disease)
along with a sample of controls.
Generating a nested case-control study is very easy in R. First, however, we’ll
repeat the full cohort analysis of the localised colon carcinoma data.
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Sampling from the risk set: the nested case-control design
III
R code and output
> localised <- subset(colon, stage == "Localised")
> localised <- transform(localised,

event=(status=="Dead: cancer"))
> summary(coxph(Surv(surv_mm, event) ~ sex+agegrp+year8594,

data=localised))

n= 6274, number of events= 1734

coef exp(coef) se(coef) z Pr(>|z|)
sexFemale -0.08939 0.91449 0.04937 -1.811 0.0702 .
agegrp45-59 -0.05198 0.94934 0.13845 -0.375 0.7073
agegrp60-74 0.29237 1.33960 0.12573 2.325 0.0201 *
agegrp75+ 0.81414 2.25724 0.12607 6.458 1.06e-10 ***
year8594Diagnosed 85-94 -0.28254 0.75387 0.04937 -5.723 1.05e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Sampling from the risk set: the nested case-control design
IV

We will generate a nested case-control study with three controls per case
matching on age group.

R code and output
> library(Epi)
> set.seed(12345)
> cc <- Epi::ccwc(exit=surv_mm, fail=event,

data=localised, include=list(sex,year8594),
controls=3, match=agegrp, silent=TRUE)

> tail(cc)

Warning message:
In Epi::ccwc(exit = surv_mm, fail = event, data = localised, include = list(sex, :

there were tied failure times
Set Map Time Fail agegrp sex year8594

6931 353 2406 73.5 0 0-44 Female Diagnosed 75-84
6932 353 3600 73.5 0 0-44 Female Diagnosed 85-94
6933 354 3792 49.5 1 0-44 Female Diagnosed 85-94
6934 354 1335 49.5 0 0-44 Male Diagnosed 75-84
6935 354 3527 49.5 0 0-44 Male Diagnosed 85-94
6936 354 2948 49.5 0 0-44 Male Diagnosed 85-94
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Sampling from the risk set: the nested case-control design
V

The resulting nested case-control study is analysed using conditional logistic
regression (theoretically very similar to Cox regression).

R code and output
> clogit(Fail ~ sex+year8594+strata(Set), data=cc)

Call:
clogit(Fail ~ sex + year8594 + strata(Set), data = cc)

coef exp(coef) se(coef) z p
sexFemale -0.1085 0.8971 0.0571 -1.90 0.057
year8594Diagnosed 85-94 -0.2914 0.7472 0.0571 -5.11 3.3e-07

Likelihood ratio test=29.1 on 2 df, p=4.85e-07
n= 6936, number of events= 1734

Estimates are similar to the full cohort but standard errors are slightly higher.
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Standardised mortality/incidence ratios I

Sometimes you only have an exposed population, and no unexposed
population to compare with.
We can then not follow-up both the exposed and the unexposed population
and compare the two estimated rates.
We instead only estimate the rate (or number of events) in the exposed
population and compare this to the expected rate (expected number of
events) for the standard population.
For example, we might study disease incidence or mortality among individuals
with a certain occupation (farmers, painters, airline cabin crew) or cancer
incidence in a cohort exposed to ionising radiation.
The standardized mortality ratio (SMR) is the ratio of the observed number
of deaths in the study population to the number that would be expected if the
study population experienced the same mortality as the standard population.
It is an indirectly standardized rate.
When studying disease incidence the corresponding quantity is called a
standardized incidence ratio (SIR).
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Standardised mortality/incidence ratios II

Example, estimating relative risk of cancer among organ transplant recipients
compared to the general population [4].
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Estimation in R I

To estimate an SIR/SMR, we typically assume the expected rates depend on
age, sex, and calendar period.
We use the survSplit function to split follow-up time in the same way as
the file of background rates is classified. That is, if the population rates are
for 5-year age groups we split using the same categories.
Multiply the expected rates by the person-times, Y , to get the expected
number of events in each category.
Collapse to get the total number of observed (O) and expected (E) events
and calculate the standardised incidence ratio SIR=O/E.
Modelling is done in the same way as for rates except we have log(E ) as the
offset instead of log(Y ).
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Estimation in R II
Example of a binary exposure x with collapsed data

R code and output
## example

> sir <- data.frame(x=c(0,1), O=c(21,32), E=c(10,10))
> eform(glm(O ~ x + offset(log(E)), data=sir, family=poisson))

exp(beta) 2.5 % 97.5 %
(Intercept) 2.10000 1.3692158 3.220822
x 1.52381 0.8787844 2.642281
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Estimation in R III

As a second example, consider a cohort study of men exposed to household
asbestos from the Australian Capital Territory. There were 7 male cases, with 2.75
expected (Korda et al 2017)

R code and output
> poisson.test(x=7, T=2.75)

Exact Poisson test

data: 7 time base: 2.75
number of events = 7, time base = 2.75, p-value = 0.02243
alternative hypothesis: true event rate is not equal to 1
95 percent confidence interval:
1.023405 5.244609

sample estimates:
event rate

2.545455
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Selection bias in observational studies I

The aim of a study is usually to derive from an available subset of patients,
statements about their patterns of survival which will be generalisable to a
wider body of patients.
Selection bias can occur when patients treated at a given clinic are not
representative of a general class of patients. For example, if seriously ill
patients are transferred to a specialist clinic then neither patients treated at
the ‘general’ clinic or the specialist clinic will be representative of ‘all patients’.
Selection bias also occurs when treatment is assigned based on characteristics
of the patients, thereby precluding comparisons between treatment groups.
Patients treated aggressively are generally healthier than patients treated
conservatively. For example:

(i) Radical prostatectomy vs ‘watchful waiting’ (expectant therapy) for men
diagnosed with localised prostate cancer.

(ii) Bone marrow transplant and high dose chemotherapy vs conventional
therapies for women diagnosed with advanced breast cancer.

High-dose chemotherapy accompanied by transplant involves harvesting bone
marrow or stem cells from the patient prior to chemotherapy.
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Selection bias in observational studies II

The patient then receives high-dose chemotherapy, which adversely affects
bone marrow. After chemotherapy, the stem cells and bone marrow are
replaced with the hope that the drugs have killed the cancer cells and the
bone marrow will regenerate before the patient dies of infection.
The procedure was started in 1979 and by the late 1980s the results looked
very promising. Patients with advanced breast cancer who were given
transplants had remission rates of 50 to 60 percent compared with the 10 to
15 percent remission rates achieved by conventional means.
Subsequent examination of the data showed that the women receiving the
transplant treatment were carefully selected to be younger than 60 and in
general good health.
Recently completed randomised clinical trials found no difference in survival
for women who were randomly assigned to have transplants and those who
were assigned to conventional therapy.
In general, comparison of survival according to treatment should be avoided
in observational studies.
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Selection bias in observational studies III

It is possible to adjust for factors which make a patient subgroup atypical
(e.g. disease characteristics, presence of comorbid conditions, age, etc.) but
there is no substitute for a randomised experimental trial for evaluating
different treatments.
For causal inference using observational data, we may be interested in
emulating a target randomised trial (see later)
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Another problem which arises when comparing treatments

A common question is whether a combination treatment (e.g. surgery
followed by radiation therapy) is preferable to the single treatment (e.g.
surgery alone).
Survival time is usually measured from date of diagnosis, date of first hospital
admission, or date of first treatment.
In order to receive the combination treatment, one must survive a sufficient
period after surgery in order to receive the radiation therapy.
Those who die during, or immediately after, surgery are included in the
‘surgery only’ group.
A naive analysis would show that the group receiving combination therapy
experience superior survival.
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Risk prediction

Risk prediction relates to the calculation of the failure function.

Risk(t; x) = 1− S(t; x) = 1− exp
(
−
∫ t

0
λ(u; x)du

)
If the hazard λ is constant, then Risk(t) = 1− exp (−λt).
For Cox regression, the baseline survival S0(t) is estimated using the Breslow
estimator. This can be estimated using the predict statement. For a linear
predictor βT x,

Risk(t; x) = 1− S0(t)exp(βT x)

Standard errors and confidence intervals for the risk estimates from Cox
regression can be calculated by reparameterising the model such that x = 0
represents the covariates of interest.
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Guidelines for publishing/presenting survival studies

Review of survival analyses published in cancer journals
DG Altman, BL Stavola, SB Love and KA Stepniewska

British Journal of Cancer, 1995

Review of 132 papers analysing survival data
The papers were published in British Journal of Cancer, European Journal of
Cancer, Journal of Clinical Oncology, American Journal of Clinical Oncology
and Cancer between October and December 1991
The review was not restricted to observational epidemiology; keep in mind
that praxis differs between disciplines
After reviewing the papers the authors suggest guidelines for presentation of
survival analyses
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Publishing your study: describing the data

Describe how you collected/obtained the data. If data are obtained from a
registry, give a brief description of the registry and information on quality and
completeness (e.g. reference to Barlow et al. [2]).
Describe inclusion criteria; e.g. dates of diagnosis, end of follow-up, etc
Describe exclusion criteria; e.g. how did you handle DCO and autopsy cases
Report how many subjects were lost to follow-up and how they were handled
in the analysis
Report the sample size (number of individuals ever at risk) and number of
events for each end point
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Publishing your study: follow-up and end points

Define the time-scale, what is the time origin and the event(s) of interest
Define any censoring events
Define end of study
Report a summary of the length of follow-up; e.g. median, min, max
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Publishing your study: describing the statistical methods

Name the method used for estimating survival probabilities
Name any test used in the analysis
What regression model did you use (how was follow-up time modeled)
Report all covariates included in analysis, why they were included and how
they were modeled (categorical, linear, spline)
Comment on missingness and how it was handled in the analysis
Report test of proportional hazards, and if the PH assumption did not hold
how was that handled
Name the software used
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Publishing your study: presentation of results

Give a summary of overall survival, for example, median or percent surviving
n years
If relevant, also give a summary of survival for different groups
When presenting results of a logrank (or similar) test, report the p-value and
also report the numbers of observed and expected events in each group
When presenting results from a regression analysis, report the estimated
hazard ratios with their confidence intervals and p-values1

1Standard practice in epidemiology is to report only HR and CI
Clements et al Biostatistics III, Day 4 4–13 November, 2024 67 / 79



Publishing your study: graphs

Use meaningful time intervals and label the axes appropriately
Consider marking survival time of censored observations and to give number
at risk at selected time points (see the CRAN Survival Taskview for packages)
If several curves are reported in the same plot use different line types
Mark confidence intervals
(comment from Paul) It’s traditional to present graphs S(t) (e.g.
Kaplan-Meier) as a simple descriptive analysis but then model the rates. If
you have no particular interest in S(t), consider presenting graphs of the
hazard instead.
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Course review I

Forms of data Right censoring implies that the event of interest happens after the
last time. Left truncation means that we condition on no event to
the entry time. We can measure time with different time origins
(e.g. birth, diagnosis, treatment, calendar period).

Describe your data For right-censored data, use Kaplan-Meier curves. We could
also smooth the rates whilst interpreting the results cautiously.
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Course review I

Forms of data Right censoring implies that the event of interest happens after the
last time. Left truncation means that we condition on no event to
the entry time. We can measure time with different time origins
(e.g. birth, diagnosis, treatment, calendar period).

Describe your data For right-censored data, use Kaplan-Meier curves. We could
also smooth the rates whilst interpreting the results cautiously.
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Course review II

Comparing two or more groups Many options!
Cox regression, with a non-parametric baseline hazard.
Estimands include hazard ratios and median survival.
Flexible parametric models (FPMs). Estimands include hazard
ratios, hazard differences, survival differences, and differences
in restricted mean survival times.
Poisson regression. Estimands include rate ratios, rate
differences and survival differences.
Accelerated failure time models, with acceleration factors (and
hazard differences, etc).
Additive hazards models, with differences in cumulative
hazards.
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Course review III

Time-varying hazard ratios Again, many options.
Cox regression, using time-splitting or tt() functions. Test for
difference and plot using Schoenfeld residuals. We can also
use a stratified Cox model (if the strata are essentially
nuisance terms).
Poisson regression, using time-splitting and including time as
another covariate, with interactions between time and
covariates. Also allows for multiple time scales.
FPMs using time-splitting or using splines.

Study designs Our focus has been on cohort studies and randomised controlled
trials. Others:

Nested case-control studies based on risk-set sampling (closely
related to Cox regression).
Case-cohort studies: not described (requires weights, which
complicates the analysis a little).
Matched cohort studies: not described (typically we adjust for
the matching factors).
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Course review III

Time-varying hazard ratios Again, many options.
Cox regression, using time-splitting or tt() functions. Test for
difference and plot using Schoenfeld residuals. We can also
use a stratified Cox model (if the strata are essentially
nuisance terms).
Poisson regression, using time-splitting and including time as
another covariate, with interactions between time and
covariates. Also allows for multiple time scales.
FPMs using time-splitting or using splines.

Study designs Our focus has been on cohort studies and randomised controlled
trials. Others:

Nested case-control studies based on risk-set sampling (closely
related to Cox regression).
Case-cohort studies: not described (requires weights, which
complicates the analysis a little).
Matched cohort studies: not described (typically we adjust for
the matching factors).
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Course review IV

Testing Be clear about your null hypothesis
A likelihood ratio test is preferred over a Wald test
Be careful with sub-group analyses:)

Model building For causal modelling, we propose using a pre-specified
analysis plan with a causal diagram to address which potential
confounders should be adjusted for.
Sometimes we need to choose which model to use for
adjustment (e.g. degrees of freedom for FPMs). Make your
analysis plan your friend.
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Estimands and estimators

Estimand Estimator Notes
Survival Kaplan-Meier Non-parametric; small bias

Poisson regression Awkward post-estimation
Cox model + Breslow
Flexible parametric model
Aalen’s additive hazards

Cumulative hazard Nelson-Aalen Non-parametric
Hazard Nelson-Aalen + Kernel den-

sity
Smoothed

Rate count/(person-time) Poisson distribution
Poisson regression

Rate ratio Poisson regression
Hazard ratio Cox model Non-parametric baseline
Time-dependent rate ratio Poisson model
Time-dependent hazard ratio Cox model Inflexible implementations

Flexible parametric model
Time-dependent additive hazards Aalen’s additive hazards

model
Collapsible

Proportional odds Flexible parametric model
Probit Flexible parametric model
Accelerated failure time Flexible parametric model Collapsible
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Restricted mean survival time (RMST)

An increasingly popular measure for time-to-event outcomes is the restricted
mean survival time (RMST), which is the area under the survival curve up to
a specified time t (e.g. five years) given covariates x . Mathematically:

RMST(t|x) =
∫ t

0
S(u|x)du

This has some nice properties; see
https://doi.org/10.1186/1471-2288-13-152.
We may also be interested in differences in RMSTs.
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Advanced topics in survival analysis I

Emulated target trials For causal inference using observational data, we may be
interested in emulating a target randomised trial. Hernán and
Robins [3] provide an introduction to this important
epidemiological method. The target emulation should account for:

Eligibility criteria (as per the target trial)
Treatment strategies (pragmatic interventions)
Assignment procedures (without blinding)
Follow-up period (including the careful definition of time zero)
Outcome (validated?)
Causal contrast of interest
Analysis plan

Frailty models Individuals within a group may have more similar hazards than
individuals between groups. We can model for the variance
between groups using frailty models.

Recurrent events Individuals may experience one or more of a type of event.
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Advanced topics in survival analysis II

Relative survival If cause of death is not well coded, then we can model the
overall mortality hazard h(t) = h0(t) + he(t), where h0(t) is the
background mortality hazard and he(t) is the excess mortality
hazard. This is useful for comparing survival between cancer
registries and for survival predictions outside of observed studies.

Competing risks What is the probability of experiencing a particular event in a
defined period in the presence of competing events? For example,
are men more likely than women to be admitted to hospital between
ages 70-79 years for stroke? Men may have a higher incidence of
stroke – but they are also more likely to die due to other causes. In
this setting, do we not censor for the competing events.

Multi-state models To generalise competing risks, an individual may move
between different health/disease states, with competing events. We
can then estimate the proportion of individuals in each of the states
at a given time. Several courses have been held on competing risks
and multi-state models (Putter and Geskus; Crowther and
Lambert).
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Exercises for Monday afternoon

22. Estimating the effect of a time-varying exposure – the bereavement data
23. Estimating SMRs
25. Localised melanoma: Generating and analysing a nested case-control study
28. Model cause-specific survival using flexible parametric models [This is a key

exercise]
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Subgroup analyses are evil – use an interaction model

Assume that we have a group or stratification variable k and that our
research question is whether the hazard ratio for an exposure x varies by k.
One approach is to do a sub-group analysis, where we do a separate model
for each level of k:

We would separately adjust for other covariates in each of the models
For each model, our null hypothesis is that the adjusted hazard ratio for x is 1

An alternative approach is to use an interaction model with main effects and
x and k and interactions between x and k:

Our null hypothesis is that the adjusted hazard ratios for x for each level of k
is the same

The null hypotheses for the two approaches are different. The second
approach addresses our research question.
All else being equal, a larger sub-group is more likely to detect a significant
effect. For such a group, that does not imply a significantly higher effect in
that group compared with the other groups.
In summary, avoid sub-group analyses – or interpret them very carefully.
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