Biostatistics Ill:

Survival analysis for epidemiologists in R

Mark Clements
Department of Medical Epidemiology and Biostatistics
Karolinska Institutet
Stockholm, Sweden
http://www.biostat3.net/

4-13 November, 2024

https://doctoralcourses.application.ki.se/fubasextern/info?
kurs=C8F2992, course code C8F2992

Clements et al Biostatistics 11, Day 3 4-13 November, 2024


http://www.biostat3.net/
https://doctoralcourses.application.ki.se/fubasextern/info?kurs=C8F2992
https://doctoralcourses.application.ki.se/fubasextern/info?kurs=C8F2992

Topics for Day 3

@ Rates which vary over time

@ The Cox model

@ Comparison of Cox and Poisson regression

@ Assessing the proportional hazards assumption in Cox regression
(]

Modelling time-varying rates and exposures
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Common forms for the hazard function |
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Common forms for the hazard function Il

@ A bathtub-shaped hazard is appropriate for all cause mortality in most human
populations followed from birth.

@ A decreasing hazard function is appropriate following the diagnosis of most
types of cancer, where mortality due to the cancer is highest immediately
following diagnosis, and then decreases with time.

@ A constant hazard function is often used for modelling the lifetime of
electronic components, but is also appropriate following the diagnosis of some
types of cancer.

@ A constant hazard function implies that survival times can be described by an
exponential distribution (which has one parameter, the hazard A). This
distribution is ‘memoryless’ in that the expected survival time for any
individual is independent of how long the individual has survived so far.

@ The survivor function has the same basic shape (a nonincreasing function
from 1 to 0) for all types of data and the hazard function is often a more
informative means of studying differences between patient groups.
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Shape of the hazard in Poisson regression

@ The Poisson regression model is

log(A\) = Bo + f1X
A = exp(Bo + 1 X)
= exp(fo) exp(B1X)

@ The baseline hazard is constant in a Poisson regression, exp(5o).

o If we add a categorical variable for time, e.g. time-since-entry in 1-year
bands, then the baseline hazard is a step function of time. The hazard is
piecewise constant in 1-year bands.

A = exp(fo + Bstyi2) + Batpp3z) + -+ ) exp(B1X)

where t[; 5) is an indicator for time being in the interval [1,2). Note that tj 1)
if left out from the equation (it is assumed to be the reference time band)
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Shape of hazard: step function
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Parametric models |

@ If we assume that survival times follow an exponential distribution, we could
model the hazard as a function of one or more covariates.

@ We could then obtain an estimate of the hazard ratio for the treatment group
compared to the control group while adjusting for other explanatory variables.

@ The disadvantage of this method is that assuming an exponential distribution
for survival times implies the assumption of a constant hazard function over
time, which may not be appropriate.

@ We have several options:

@ Split by time and assume that the hazard is piece-wise constant (Poisson
regression — discussed on Day 2).
@ Use a more flexible distribution (e.g. Weibull regression and flexible parametric

survival models).
@ Use a non-parametric function for the baseline hazard (Cox regression).
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Parametric models I

@ The Weibull, log-normal and Gompertz distributions have proved to be
applicable in several types of medical survival studies. These models can
fitted as accelerated failure time (AFT) models. If the time to event is
represented by T, with covariates X, then the AFT model assumes that

E(TIX) = E(To)exp(—5X)

where Ty is the baseline time variable for X = 0.

@ These models have a very nice interpretation, where exp(—0) is the change
in the mean time per unit change in X. As we will discuss on Day 4, these
models are also collapsible (the estimated effect of an exposure does not
change if we add or remove explanatory variables that are not confounders).

o If a parametric distribution is appropriate, such models will result in more
efficient estimates (narrower confidence limits) of the parameters of interest.

@ An alternative parametric class are the flexible parametric survival models (or
generalised survival models), which includes proportional hazards and
proportional odds models. We will also discuss this model class further on
Day 4.
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Parametric models IlI

@ The parametric models may be sensitive to the choice of parametric
distribution.

@ That is, when using parametric survival models, special attention must be
paid to testing the appropriateness of the model.
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The shape of hazards in a Cox model

@ The Cox model does not make any assumption about the shape of the hazard
function.

@ Instead, the baseline hazard is allowed to vary freely.
@ The Cox model only estimates hazard ratios relative to the baseline hazard.

@ Since the baseline hazard is not estimated in the Cox model, it is said to be
semi-parametric.

@ Note: given a fitted Cox model, we can estimate the non-parametric baseline
cumulative hazard and then smooth to estimate the hazard.
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An introduction to the Cox model via an example:

Survival of patients diagnosed with colon carcinoma |

@ Patients diagnosed with colon carcinoma 1984-95. Potential follow-up to end
of 1995; censored after 10 years.
@ Outcome is death due to colon carcinoma.

o Interest is in the effect of clinical stage at diagnosis (distant metastases vs no
distant metastases).
@ How might we specify a statistical model for these data?
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An introduction to the Cox model via an example:

Survival of patients diagnosed with colon carcinoma Il
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The Cox proportional hazards model |

A proportional hazards model is on the form

ACEIX) = Aol(£) exp(BX).

@ The hazard at time t for an individual with some covariate values is a
multiple of the baseline.

@ This means that the hazards for different levels of X are proportional.
@ The Cox model is a proportional hazards model.

@ However, the Cox model does not estimate the baseline hazard, A\o(t). It only
estimates the regression coefficients, (.

@ The ‘intercept’ in the Cox model [3], the hazard (event rate) for individuals
with all covariates X at the reference level, is an arbitrary function of time!,
often called the baseline hazard and denoted by Ao(t).
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The Cox proportional hazards model Il

@ The Cox model can also be written on the log scale
log[A(t] X)] = log[Xo(t)] + BX.

where X =1 for patients with distant metastases at diagnosis and X = 0 for
patients without distant metastases at diagnosis.

@ The difference between two hazards is a constant 3 regardless of t

log[A(t|X)] — log[Xo(2)] = BX.

@ The two hazard curves are thus assumed to be parallel on a log scale.
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The Cox proportional hazards model Ill
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Ltime t can be defined in many ways, e.g., attained age, time-on-study, calendar-time,zetc.
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Fit a Cox model to estimate the mortality rate ratio |

R code and output

> colon2 <- transform(colon, distant = (stage == "Distant"),
dead = status %in’% c("Dead: cancer",'"Dead: other"))
> summary (coxph (Surv(surv_mm,dead) ~distant, data=colon2))

Call:
coxph(formula = Surv(surv_mm, dead) ~ distant, data = colon2)

n= 15564, number of events= 10918

coef exp(coef) se(coef) z Pr(>|zl)
distantTRUE 1.37395 3.95093 0.02033 67.59 <2e-16 **x*

Signif. codes: 0 “*x*’ 0.001 ‘*%’ 0.01 ‘%’ 0.05 ‘.’ 0.1 ¢ ’> 1

exp(coef) exp(-coef) lower .95 upper .95
distantTRUE 3.951 0.2531 3.797 4.112
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Fit a Cox model to estimate the mortality rate ratio Il
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Fit a Cox model to estimate the mortality rate ratio Ill
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An analogous Poisson regression model?

R code and output

> summary(glm(dead ~ distant + offset(log(surv_mm)), data=colon2, family=poisson))

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -4.61317 0.01278 -361.10 <2e-16 **x*
distantTRUE 1.75189 0.01928 90.84 <2e-16 **x*

Signif. codes: 0 ‘x*x’> 0.001 ‘*%x’> 0.01 ‘%’ 0.05 ‘.’ 0.1 ¢ > 1

@ Is this conceptually analogous to the Cox model with one predictor
(distant)?
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Fitted values: Poisson model with
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@ We haven't controlled for time, whereas the Cox model does.
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An analogous Poisson regression model

R code and output

> transform(biostat3::colon,
distant = (stage == "Distant"),
dead = status %in% c("Dead: cancer","Dead: other")) [>
survSplit (formula=Surv(surv_mm/12, dead) ~ distant, episode="timeband",
cut=1:8) |>
transform(py = tstop - tstart) [>
glm(formula=dead ~ distant + factor(timeband) + offset(log(py)),
family=poisson) |>
broom: :tidy (conf.int=TRUE, exponentiate=TRUE)

term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0.257 0.0178 -76.5 0 0.248 0.266

2 distantTRUE 4.13 0.0201 70.5 0 3.97 4.29

3 factor(timeband)2 0.595 0.0270 -19.2 1.91e- 82 0.565 0.628
4 factor(timeband)3 0.404 0.0361 -25.2 1.16e-139 0.376 0.433
5 factor(timeband)4 0.339 0.0431 -25.1 6.83e-139 0.311 0.368
6 factor(timeband)5 0.313 0.0492 -23.6 2.72e-123 0.284 0.344
7 factor(timeband)6 0.295 0.0552 -22.1 1.58e-108 0.264 0.328
8 factor(timeband)7 0.253 0.0645 -21.3 1.78e-100 0.223 0.287
9 factor(timeband)8 0.232 0.0730 -20.0 2.35e- 89 0.200 0.266
10 factor(timeband)9 0.226 0.0391 -38.0 0 0.209 0.244
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Fitted values: Poisson regression model adjusted for time |
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@ Once we adjust for time we get a similar estimate for the effect of distant.
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Fit a Cox model adjusted for age at diagnosis |

R code and outp
fit <- coxph(Surv(surv_mm/12, status=="Dead: cancer") ~ I(age>=75) +
I(stage=="Distant"), data=colon)
summary (fit)

n= 15564, number of events= 8369

coef exp(coef) se(coef) z Pr(>lzl|)
I(age >= 75)TRUE 0.49319 1.63754 0.02232 22.10 <2e-16 **x*
I(stage == "Distant")TRUE 1.68755 5.40620 0.02295 73.53 <2e-16 **x*

Signif. codes: O “x**’ 0.001 ‘**’ 0.01 ‘%’ 0.05 .’ 0.1 ¢ ’ 1

exp(coef) exp(-coef) lower .95 upper .95
I(age >= 75)TRUE 1.638 0.6107 1.567 1.711
I(stage == "Distant")TRUE 5.406 0.1850 5.168 5.655
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Fit a Cox model adjusted for age at diagnosis Il
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The Cox proportional hazards model (in detail) |

@ The most commonly applied model in medical time-to-event studies is the
Cox proportional hazards model [3].

@ The Cox proportional hazards model does not make any assumption about
the shape of the underlying hazards, but makes the assumption that the
hazards for patient subgroups are proportional over follow-up time.

@ We are usually more interested in studying how hazard varies as a function of
explanatory variables (the relative hazard) rather than the shape of the
underlying hazard function (the absolute hazard).

@ In most statistical models in epidemiology (e.g. linear regression, logistic
regression, Poisson regression) the outcome variable (or a transformation of
the outcome variable) is equated to the ‘linear predictor’,

Bo + B Xy + - 4 BuXk.

@ Xi,..., Xk are explanatory variables and Sy, ..., Bk are regression coefficients
(parameters) to be estimated.

@ The Xs can be continuous (age, blood pressure, etc.) or if we have
categorical predictor variables we can create a series of indicator variables (Xs
with values 1 or 0) to represent each category.
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The Cox proportional hazards model (in detail) Il

@ A common choice is

A(t|X) = exp(Bo + S1 X1 + - - + BuXk)
log A(t|X) = fo + f1 X1+ - - + BuX«

@ This formulation is identical to the Poisson regression model. That is,

no. events
log| ——

. ) = Bo+ B Xe + -+ BrXk
person-time

@ The one flaw in this potential model is that A(t|X) is a function of ¢,
whereas the right hand side will have a constant value once the values of the
Bs and Xs are known.

@ This does not cause any mathematical problems, although experience has
shown that a constant hazard rate is unrealistic in most practical situations.

@ The remedy is to replace [y, the ‘intercept’ in the linear predictor, by an
arbitrary function of time — say log A\o(t); thus, the resulting model equation
is

log A(t[X) = log Ao(t) + S1 X1 + - - + BiXk.
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The Cox proportional hazards model (in detail) Il

@ The arbitrary function, Ag(t), is evidently equal to the hazard rate, \(t]|X),
when the value of X is zero, i.e., when X = --- = X, = 0.

@ The model is often written as
A(t[X) = Ao(t) exp(X ).

@ It is not important that an individual having all values of the explanatory
variables equal to zero be realistic; rather, \g(t) represents a reference point
that depends on time, just as By denotes an arbitrary reference point in other
types of regression models.
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The Cox proportional hazards model (in detail) IV

@ This regression model for the hazard rate was first introduced by Cox [3], and
is frequently referred to as the Cox regression model, the Cox proportional
hazards model, or simply the Cox model.

o Estimates of 1, ..., 8k are obtained using the method of maximum partial
likelihood.

@ As in all other regression models, if a particular regression coefficient, say f;,
is zero, then the corresponding explanatory variable, X;, is not associated
with the hazard rate of the response of interest; in that case, we may wish to
omit X; from any final model for the observed data.

@ As with logistic regression and Poisson regression, the statistical significance
of explanatory variables is assessed using Wald tests or, preferably, likelihood
ratio tests.

@ The Wald test is an approximation to the likelihood ratio test. The likelihood
is approximated by a quadratic function, an approximation which is generally
quite good when the model fits.

@ In most situations, the test statistics will be similar.
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The Cox proportional hazards model (in detail) V

@ Differences between these three test statistics are indicative of possible
problems with the fit of the model.

@ Because of the inter-relationship between the hazard function, A(t|X), and
the survivor function, S(t|X), we can show that the PH regression model is
equivalent to specifying that

s(ex) = e (- | o) exp(B1Xs + -+ X))

exp

= exp( exp(f1 X1 + - —l—ﬁka)/ )\o(u)du>
0

)exp(/@1X1+“‘+ﬂka)
t)eXP 51X1+ +BiXk) (1)
where S(t]|X) denotes the survivor function for a subject with explanatory

variables X, and Sy(t) is the corresponding survivor function for an individual
with all covariate values equal to zero.
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The Cox proportional hazards model (in detail) VI

@ The assumption of proportional hazards is a strong assumption, and should
be tested (see slide 55).

@ Most software packages, will provide estimates of S(t) based on the fitted
proportional hazards model for any specified values of explanatory variables.

@ For example, the biostat3: : coxphHaz function can be used to plot the
hazard function.
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The Estimated Regression Coefficients

@ The estimated coefficients, 3, are log rate ratios. To get the rate ratios we
need to exponentiate the coeffecients, exp(3).

@ The confidence intervals for the 8 are on the log scale. The Cls are therefore
not symmetric around the rate ratios.
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Interpreting the Estimated Regression Coefficients |

@ Recall that the basic proportional hazard (PH) regression model specifies
A(t[X) = Ao(t) exp(Bi X + - - - + BiXk)
equivalently,
log A(t|X) = log Ao(t) + B1.X1 + - - - + BiXk
@ Note the similarity to the basic equation for multiple linear regression, i.e.,
Y = Bo+ B X1+ -+ BiXi

@ In ordinary regression we derive estimates of all the regression coefficients,
i.e., 517 e ,ﬁk and ﬁo.

@ In PH regression, the baseline hazard component, A\o(t), vanishes from the
partial likelihood; we only obtain estimates of the regression coefficients
associated with the explanatory variates Xi, ..., Xk.
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Interpreting the Estimated Regression Coefficients ||

@ Consider the simplest possible setup, one involving only a single binary
variable, X; then the PH regression model is

log A(t|X) = log \o(t) + BX

or equivalently,

BX = log A(t|X) — log \o(t)

()

@ Since Ao(t) corresponds to the value X =0,
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Interpreting the Estimated Regression Coefficients IlI

@ That is, g is the logarithm of the ratio of the hazard rate for subjects
belonging to the group denoted by X = 1 to the hazard function for subjects
belonging to the group indicated by X = 0.

@ The parameter 3 is a log relative rate and exp(f) is a relative rate of
response.

@ If we conclude that the data provide reasonable evidence to contradict the
hypothesis that X is unrelated to response, exp(ﬂA) is a point estimate of the
rate at which response occurs in the group denoted by X = 1 relative to the
rate at which response occurs at the same time in the group denoted by
X =0.

@ A confidence interval for (3, given by B+ 1.96SE, represents a range of
plausible values for the log relative rate associated with the corresponding

explanatory variable.
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Interpreting the Estimated Regression Coefficients 1V

@ Corresponding confidence intervals for the relative rate associated with the
same covariate are obtained by transforming the confidence interval for 3, i.e.,

(/3@’@]) = (eB‘, e,@u) i
@ When more than one covariate is involved, the principle is the same; exp(Bj)
is the estimated relative rate of failure for subjects that differ only with
respect to the covariate X;.

o If X; is binary, exp(53;) estimates the increased/reduced rate of response for
subjects corresponding to X; = 1 versus those denoted by X; = 0.

@ When X; is a numerical (continuous) measurement then exp(f3;) represents
the estimated change in relative rate associated with a unit change in Xj.

@ Since the estimates 31, . ,Bk are obtained simultaneously, these estimated
relative rates adjust for the effect of all the remaining covariates included in
the fitted model.
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Example: Localised colon carcinoma 1975-1994 |

o We fitted a proportional hazards model to study the effect of sex, age (in 4
categories), and calendar period (2 categories) on cause-specific mortality
(only deaths due to colon cancer were considered events).

o We'll begin by restricting the data to localised cases only (stage=1).

@ We consider cause specific mortality.
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Example: Localised colon carcinoma 1975-1994 ||

R code and outp

> fit <- coxph(Surv(surv_mm/12, status=="Dead: cancer") ~ sex + agegrp + year8594,
subset=(stage=="Localised"), data=colon)
> summary (fit)

n= 6274, number of events= 1734

coef exp(coef) se(coef) z Pr(>|zl)
sexFemale -0.08939 0.91449 0.04937 -1.811  0.0702 .
agegrp45-59 -0.05198 0.94934 0.13845 -0.375 0.7073
agegrp60-74 0.29237 1.33960 0.12573 2.325 0.0201 *
agegrp75+ 0.81414 2.25724 0.12607 6.458 1.06e-10 ***
year8594Diagnosed 85-94 -0.28254 0.75387 0.04937 -5.723 1.05e-08 x**x*
Signif. codes: 0 ‘x*x’> 0.001 ‘*%x’> 0.01 ‘x’> 0.05 ‘.’ 0.1 ¢ > 1

exp(coef) exp(-coef) lower .95 upper .95

sexFemale 0.9145 1.0935  0.8301  1.0074
agegrp45-59 0.9493 1.0534  0.7237  1.2453
agegrp60-74 1.3396 0.7465  1.0470  1.7140
agegrp75+ 2.2572 0.4430  1.7631  2.8900
year8594Diagnosed 85-94  0.7539 1.3265  0.6843  0.8305

Likelihood ratio test= 199.1 on 5 df, P
Wald test = 198.4 on 5 df, p=
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Example: Localised colon carcinoma 1975-1994 IlI

@ The output commences with a description of the outcome and censoring
variable and a summary of the number of subjects and number of failures.

@ The default method for handling ties (the Efron method) is used.

@ The test statistic LR chi2(5) = 199.1 is not especially informative. The
interpretation is that the 5 parameters in the model (as a group) are
statistically significantly associated with the outcome (P < 0.00005).

@ The factor variable sex is coded ‘Male’ (the reference) and ‘Female’. The
estimated hazard ratio for sex represents the ratio of the hazards for females
compared to males.

@ That is, the estimated hazard ratio is 0.92 indicating that females have an
estimated 8% lower colon cancer mortality than males. There is some
evidence that the difference is different from zero (P = 0.07).

@ The model assumes that the estimated hazard ratio of 0.92 is the same at
each and every point during follow-up and for all combinations of the other
covariates.
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Example: Localised colon carcinoma 1975-1994 IV

@ That is, the hazard ratio is the same for females diagnosed in 1975-1984
aged 0-44 (compared to males diagnosed in 1975-1984 aged 0-44) as it is
for females diagnosed in 1985-1994 aged 75+ (compared to males diagnosed
in 1985-1994 aged 75+).

@ The factor variable year8594 is coded ‘Diagnosed 75-84' (the reference) and
‘Diagnosed 85-94".

@ The estimated hazard ratio is 0.75. We estimate that, after controlling for
the time scale, age and sex, patients diagnosed 1985-1994 have a 25% lower
mortality than patients diagnosed during 1975-1984. The difference is
statistically significant (P < 0.0005).

@ We chose to group age at diagnosis into four categories; 0—44 (the
reference), 45-59, 60-74, and 75+ years.

@ It is estimated that individuals aged 75+ at diagnosis experience 2.25 times
higher risk of death due to colon carcinoma than individuals aged 0-44 at
diagnosis, a difference which is statistically significant (P < 0.0005).

@ Similarly, individuals aged 60—74 at diagnosis have an estimated 34% higher
risk of death due to colon carcinoma than individuals aged 0-44 at diagnosis,
a difference which is statistically significant (P < 0.02).
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Example: Localised colon carcinoma 1975-1994 V

@ These significance tests test the pairwise differences and tell us little about
the overall association between age and survival — we need to perform a
general test.

R code and outp

> library(car)
> linearHypothesis(fit, c("agegrp45-59","agegrp60-74","agegrp75+"))

Linear hypothesis test

Hypothesis:
agegrp4b - 59 = 0
agegrp60 - 74 = 0

agegrp’5 + =0

Model 1: restricted model
Model 2: Surv(surv_mm/12, status == "Dead: cancer") ~ sex + agegrp + year8594

Res.Df Df Chisq Pr(>Chisq)
1 6272
2 6269 3 175.88 < 2.2e-16 *xx

Signif. codes: O “x**’ 0.001 ‘**’ 0.01 ‘%’ 0.05 ‘.’ 0.1 ¢ °> 1
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Example: Localised colon carcinoma 1975-1994 VI

@ This is a Wald test of the null hypothesis that all age parameters are equal to
zero, i.e. that age is not associated with the outcome.

@ We see that there is strong evidence against the null hypothesis, i.e. we
conclude that age is significantly associated with survival time.

@ The Wald test is an approximation to the likelihood ratio test, which
compares the likelihood between models.

@ To perform a likelihood ratio test we fit a reduced model without age.
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R code and output

Example: Localised colon carcinoma 1975-1994 VII

> fit2 <- coxph(Surv(surv_mm/12, status=="Dead: cancer") ~ sex + year8594,
subset=(stage=="Localised"), data=colon)
> anova(fit,fit2,test="Chisq")

Analysis of Deviance Table
Cox model: response is Surv(surv_mm/12, status == "Dead: cancer")
Model 1: ~ sex + agegrp + year8594
Model 2: ~ sex + year8594
loglik Chisq Df P(>|Chil)
1 -14342
2 -14430 176.71 3 < 2.2e-16 ***

Signif. codes: 0 “x**’ 0.001 ‘**’ 0.01 ‘%’ 0.05 .’ 0.1 ¢ ’ 1

@ The log likelihood for the model containing age is —14342; for the model
excluding age it is —14430.

@ The likelihood ratio test statistic for the association of age with survival is
calculated as 2 x (—14342 — (—14430)) = 177, which is compared to a x?
distribution with 3 degrees of freedom (P=0.0001).

o We see that the Wald test statistic (175.88) is very similar in value to the
likelihood ratio test statistic (176.71).
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We might choose to model age as a continuous variable |

R code and output

> fit <- coxph(Surv(surv_mm/12, status=="Dead: cancer") ~ sex + age + year8594,
subset=(stage=="Localised"), data=colon)
> summary (fit)

n= 6274, number of events= 1734

coef exp(coef) se(coef) z Pr(>|zl|)
sexFemale -0.102884 0.902232 0.049362 -2.084 0.0371 *
age 0.033624 1.034196 0.002342 14.359 < 2e-16 *x*

year8594Diagnosed 85-94 -0.290566 0.747840 0.049343 -5.889 3.89e-09 **x

Signif. codes: 0 ‘#*x*’ 0.001 ‘%%’ 0.01 ‘x’> 0.05 ‘.’ 0.1 ¢ ’ 1

exp(coef) exp(-coef) lower .95 upper .95
sexFemale 0.9022 1.1084 0.8190 0.9939
age 1.0342 0.9669 1.0295 1.0390
year8594Diagnosed 85-94 0.7478 1.3372 0.6789 0.8238
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We might choose to model age as a continuous variable |l

@ For each (and every) one year increase in age at diagnosis, we estimate that
mortality is 3.4% higher.

@ For a 10-year increase in age at diagnosis the estimated hazard ratio is
1.03410 = 1.40.
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Comparison of Cox regression to Poisson regression for the

analysis of cohort studies |

@ The methods are very similar; the basic formulation of both models is
log(rate) = Xp5.

@ In both cases, the 5 parameters are interpreted as log rate ratios.

@ Both models are multiplicative (i.e. both assume proportional hazards).

@ That is, if the RR for males/females is 3 and the RR for smokers to
non-smokers is 4, then the RR for male smokers to female non-smokers is 12
(in a model with no interaction terms).

@ In Poisson regression, follow-up time is classified into bands and a separate
rate parameter is estimated for each band (or smoothed!), thereby allowing
for the possibility that the rate is changing with time.

@ It is assumed that the rate is constant within each band, so if the rate is
changing rapidly with time we may have to choose very narrow bands.

@ In Cox regression, we essentially choose bands of infinitesimal width; each
band is so narrow that it includes only a single event.
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Comparison of Cox regression to Poisson regression for the

analysis of cohort studies Il

@ Unlike in Poisson regression, we do not estimate the baseline rates within
each time band; instead, we estimate the relative rates for the different levels
of the covariates.

@ As such, if estimating the effect of time is of interest then Poisson regression
is a more natural choice.

@ Time-by-covariate interactions (i.e., non-proportional hazards) and multiple
time scales are, in practice, easier to model in the framework of Poisson
regression.
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Equivalence of Cox and Poisson regression |

@ The Cox model can be viewed as extending the life-table approach ad
absurdum by:
@ splitting time as finely as possible,
@ modelling one covariate, the time-scale, with one parameter per observed
value of time,
@ profiling these parameters out by maximizing the profile likelihood

@ Subsequently recover the effect of the timescale by smoothing an estimate of
the parameters that was profiled out!
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Equivalence of Cox and Poisson regression |l

library(xtable)
cuts <- (1:20)*12 ## yearly split
localised <- survSplit(Surv(surv_mm, status=="Dead: cancer") ~ sex + agegrp + year8594,
subset=(stage=="Localised"), data=colon, cut=cuts, episode="timeband") [>
group_by (sex,agegrp,year8594,timeband) |>
summarise(event=sum(event), pt = sum(surv_mm - tstart)) # collapse
fit <- glm(event ~ sex + agegrp + year8594 + factor(timeband) + offset(log(pt)),
data=localised,
family=poisson, control=list(maxit = 200, epsilon=1e-12))
cuts <- with(subset(colon, stage=="Localised" & status=="Dead: cancer"),
sort(unique(surv_mm))) # split by event times
cuts <- cuts[-length(cuts)]
localised <- survSplit(Surv(surv_mm, status=="Dead: cancer") ~ sex + agegrp + year8694,
subset=(stage=="Localised"), data=colon, cut=cuts,
episode="timeband") |>
group_by (sex,agegrp,year8594, timeband) |>
summarise (event=sum(event), pt = sum(surv_mm - tstart)) # collapse
fit2 <- glm(event ~ sex + agegrp + year8594 + factor(timeband) + offset(log(pt)),
data=localised,
family=poisson, control=list(maxit = 200, epsilon=1e-12))
fit3 <- coxph(Surv(surv_mm, status=="Dead: cancer") ~ sex + agegrp + year8594,
subset=(stage=="Localised"), data=colon)
xtable(data.frame(poisson=coef (fit) [2:6], poisson.fine=coef (fit2)[2:6], coxph=coef (£it3)))
4
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Equivalence of Cox and Poisson regression Ill

sexFemale  agegrp45-59 agegrp60-74  agegrp75+  year8594Diagnosed 85-94

poisson -0.0930 -0.0503 0.2959 0.8280 -0.2789
poisson.fine -0.0889 -0.0525 0.2904 0.8093 -0.2814
coxph -0.0894 -0.0520 0.2924 0.8141 -0.2825
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Choice of time scale in a Cox model |

@ In Cox regression the hazard ratio (HR) compares the hazard rates of two
groups at each t.

@ So for any t, the hazards are assumed to be proportional by a multiple, HR.

@ Since the comparison is made at each t, the HR is automatically adjusted for
t, the underlying time scale.

@ For example, if we use attained age as the underlying time scale, then all the
HRs will be adjusted for age in the Cox model.

@ If age is the chosen as the underlying time scale in the Cox model, the effect
of age cannot be estimated directly, since it is incorporated in the shape of
the baseline hazard, which is allowed to vary freely.

@ The adjustment of the underlying time scale in a Cox model is very efficient,
since it adjusts for time in very small intervals.

@ Hence, if one of the three possible time scales for your data (time-in-study,
attained age, calendar time) is a strong confounder of your
exposure—outcome association, then that time scale should be preferred.
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Choice of time scale in a Cox model Il

@ For example, consider a cohort study where individuals are randomly selected
from the population and followed for cancer incidence.

@ For most cancers, age is a strong confounder. If we are not interested in
estimating the effect of age, an efficient approach to adjust for age is to
choose age as the underlying time scale [8, 1, 2].

@ Thiébaut and Bénichou [8] recommend using age as the timescale and
conclude ‘we strongly recommend not using time-on-study as the time-scale
for analysing epidemiologic cohort data [where entry has no clinical or
biological relevance]"
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Analysing the diet data using Cox regression |

@ Use attained age as the timescale.

R code and output

> scale <- 365.24

> fit <- coxph(Surv((doe-dob)/scale, (dox-dob)/scale, chd) ~ hieng,
data=diet)

> summary (fit)

coef exp(coef) se(coef) z Pr(>lzl)
hienghigh -0.6114 0.5426 0.3028 -2.019 0.0435 *

Signif. codes: O “*x*’ 0.001 ‘*%’ 0.01 ‘%’ 0.05 ‘.’ 0.1 ¢ > 1

exp(coef) exp(-coef) lower .95 upper .95
hienghigh 0.5426 1.843 0.2997 0.9823

Concordance= 0.584 (se = 0.038 )

Rsquare= 0.012  (max possible= 0.755 )
Likelihood ratio test= 4.2 on 1 df, p=0.04047
Wald test 4.08 on 1 df, p=0.04348
Score (logrank) test = 4.2 on 1 df, p=0.04033
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Analysing the diet data using Cox regression |l

@ This is a test of equality of CHD mortality rates between individuals with a
high and low energy intake, adjusted for attained age, and assuming
proportional hazards with respect to attained age.

@ That is, it is a very similar test to that performed in the framework of
Poisson regression (and to the log-rank test ).

@ The effect estimate and P-value for the test of the effect of hieng are very
similar in the Cox and Poisson regression models.

o A slight difference is that attained age was categorised in the Poisson
regression model and the rate assumed to be constant within each category.
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Summary so far

We have introduced the Cox model to model survival data.

The Cox model is an alternative to the Poisson regression model.

The Cox model does not assume a shape of the baseline hazard, but allows it
to vary freely.

The Cox model assumes proportional hazards.

We need to assess the appropriateness of the proportional hazards
assumption.
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Assessing the appropriateness of the proportional hazards

assumption |

@ The proportional hazards assumption is a strong assumption and its
appropriateness should generally be assessed.

@ The model assumes that the ratio of the hazard functions for any two patient
subgroups (i.e. two groups with different values of the explanatory variable
X) is constant over follow-up time.

@ Note that it is the hazard ratio which is assumed to be constant. The hazard
can vary freely with time.

@ When comparing an aggressive therapy vs a conservative therapy, for
example, it is not unusual that the patients receiving the aggressive therapy
do worse earlier, but then have a lower hazard (i.e. better survival) than
those receiving the conservative therapy.

@ In this situation, the ratio of the hazard functions will not be constant over
time, as is assumed by the PH model.
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Assessing the appropriateness of the proportional hazards

assumption |l

@ On Day 1, we showed an example of non-proportional hazards, although this
may not be obvious to the untrained eye; it is difficult to assess the PH
assumption by looking at the estimates of the survivor function.

@ If the hazard functions cross, it is possible that the effect of treatment will not
be statistically significant despite the presence of a clinically interesting effect.

@ As such, it is important to plot survival curves before fitting the model and to
assess the appropriateness of the proportional hazards assumption of the
proportional hazards assumption after the model has been fitted.

@ Note that the hazard functions do not have to cross for the PH assumption
to be violated. For example, a hazard ratio of 4 which gradually decreases
with time to a value of 1.5 is an example of non-proportional hazards.

@ Hess (1995) [6] reviews methods for assessing the appropriateness of the
proportional hazards assumption.

@ Therneau & Grambsch [7] give a more up-to-date review and include code for
implementing the various methods in SAS and R.
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Assessing the appropriateness of the proportional hazards

assumption Il

@ Following is a list of commonly used methods for assessing the
appropriateness of the proportional hazards assumption (in increasing order of
utility):

@ Plotting the cumulative survivor functions and checking that they do not
cross. This method is not recommended, since the survivor functions do not
have to cross for the hazards to be non-proportional.

@ Plotting the log cumulative hazard functions over time and checking for
parallelism. This method does not provide any formal fit criteria and is more
descriptive.

@ Including time-by-covariate interaction terms in the model and testing
statistical significance. For example, a statistically significant time-by-exposure
term would indicate a trend in the hazard ratio with time.

@ Plotting Schoenfeld's residuals against time to identify patterns.

@ The first two methods do not allow for the effect of other covariates, whereas
the second two methods do.

@ Including a time-by-covariate interaction in the model has the advantage that
we obtain an estimate of the hazard ratio as a function of time.
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Modelling interactions with time to test and model

non-proportional hazards |

@ Non proportional hazards is just a special name for ‘effect modification by
time on a log scale’.

o Effect modification is a familiar concept; we can use interaction terms to test
for effect modification and to estimate the effect of exposure in each stratum
of the modifier.

@ Note that Poisson regression also assumes proportional hazards. To allow for
non-proportional hazards we fit time by covariate interaction effects.

@ The difficulty with the Cox model is that we don't explicitly estimate the
effect of time so it's not obvious how to fit a time by covariate interaction.
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Modelling interactions with time to test and model

non-proportional hazards Il

@ We can use one of two approaches:
e Split by time.
o Use the options in R for modelling ‘time-varying covariates’ (using the tt ()
function in coxph()).

@ What we are actually interested in is the situation where the effect of a
covariate varies by time, which is not the same as the value of covariate
varying with time. We'll discuss the distinction in more detail on slide 72.

@ We do not explicitly estimate the the effect of the underlying time scale in a
Cox model, but we can estimate interactions with the underlying time scale.

o Note that it is possible to estimate the underlying time-scale (baseline
cumulative hazard and hazard) after fitting a Cox model (see
survival: :basehaz and biostat3: :coxphHaz).

@ We still allow the baseline hazard to vary freely, but relax the assumption
that hazards must be proportional over time.
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Modelling interactions with time, by splitting time

@ One way to model interactions with the underlying time scale, is to split time
and allow covariates to have different effects over time.

@ The R function survSplit () divides risktime into several records, one for
each timeband we specify.

@ We will now model an interaction with time in the colon carcinoma data, to
allow for different hazard ratios for calendar period before and after 2 years

(24 months).
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Colon data: estimating a time by period interaction |

@ We have seen that mortality depends on calendar period of diagnosis (HR
0.72 for recent/early period).

@ Would we expect mortality in the recent period to be 28% lower at all points
in the follow-up or is it conceivable that the effect is greater (or even
restricted) to the period immediately following diagnosis?

o If the effect is different early in the follow-up, compared to later in the
follow-up, then we have a case of non-proportional hazards.

@ That is, the effect of calendar period is modified by time since diagnosis.

@ Based on clinical knowledge, we choose to estimate the effect separately for
the first 24 months of follow-up.
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Colon data: estimating a time by period interaction Il

o We start with splitting the data on time, t < 24 months, using
survival: :survSplit.

> localised <- survSplit(Surv(surv_mm, status=="Dead: cancer")~ agegrp+sex+year8594,
cut=c(24,1000),
data=colon, subset=(stage=="Localised"),
episode="timeband")

> localised <- transform(localised, timeband = factor(timeband))

@ We can now fit a model containing the interaction between year of diagnosis
(two categories) and time (in two categories).
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Colon data: estimating a time by period interaction IlI

R code and output

> summary (coxph(Surv(tstart,surv_mm,event) ~agegrp+sex+year8594*timeband,
data=localised))

n= 10885, number of events= 1734

coef exp(coef) se(coef) z Pr(>lzl)
agegrp45-59 -0.05169 0.94962 0.13845 -0.373 0.70888
agegrp60-74 0.29122 1.33806 0.12573 2.316 0.02055 *
agegrp75+ 0.81496 2.25908 0.12605 6.465 1.01e-10 **x
sexFemale -0.09003 0.91390 0.04937 -1.824 0.06822 .
year8594Diagnosed 85-94 -0.42272 0.65526 0.06531 -6.473 9.63e-11 *xx
timeband?2 NA NA 0.00000 NA NA
year8594Diagnosed 85-94:timeband2 0.32288 1.38110 0.09883 3.267 0.00109 *x*

Signif. codes: O “x**’ 0.001 ‘**’ 0.01 ‘%’ 0.05 .’ 0.1 ¢ ° 1

Warning message:
In coxph(Surv(tstart, surv_mm, event) ~ agegrp + sex + year8594 *
X matrix deemed to be singular; variable 6
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Colon data: estimating a time by period interaction IV

@ Recall how we interpret interaction effects (in general).
e year8594Diagnosed 85-94; effect of the later calendar period of diagnosis
(1985-1994)
o timeband?2; effect of time in the second period of follow-up (after 24 months).
o year8594Diagnosed 85-94:timeband?2; additional (multiplicative) effect of
later calendar period (1985-1994) at the second period of follow-up (after 24
months).
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Colon data: estimating a time by period interaction V

@ timeband2 does not have the usual interpretation because we have already
adjusted for the effect of time since diagnosis (as the underlying timescale).

@ We are effectively trying to adjust for the same confounder in two different
ways in the same model. We should ignore this estimate and focus on the
other two.

@ The estimated hazard ratio for the effect of period of diagnosis is

e 0.72 when assuming proportional hazards
e 0.66 for the early period
o 0.91 for the recent period (0.655 x 1.381 = 0.90)

@ We see that there is evidence that the effect of period of diagnosis is more
pronounced early in the follow-up.

o If the interaction effect was zero (HR associated with
year8594Diagnosed 85-94:timeband2 equal to one) then there would be
no effect modification (proportional hazards).

@ We can see that the interaction effect is statistically significant (p=0.001).

@ As we saw previously, we can reparameterise the model to estimate the effect
of period within each timeband.
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Colon data: estimating a time by period interaction VI

@ Then we fit the model again using these indicator variables for the effect of
calendar period over time.

R code and output

> localised <- transform(localised,
later=ifelse(year8594=="Diagnosed 85-94",1,0))
> summary (coxph(Surv(tstart,surv_mm,event)~agegrp+sex+later:timeband,
data=localised))

coef exp(coef) se(coef) z Pr(>lzl)
agegrp45-59 -0.05169 0.94962 0.13845 -0.373 0.7089
agegrp60-74 0.29122  1.33806 0.12573 2.316 0.0205 *
agegrp75+ 0.81496 2.25908 0.12605 6.465 1.01e-10 ***
sexFemale -0.09003 0.91390 0.04937 -1.824 0.0682 .
later:timebandl -0.42272 0.65526 0.06531 -6.473 9.63e-11 **x*
later:timeband2 -0.09984  0.90498 0.07438 -1.342 0.1795
Signif. codes: 0 ‘*x*’ 0.001 ‘*x’> 0.01 ‘%’ 0.05 ‘.’ 0.1 ¢ > 1

@ Note that we could also use the biostat3::1incom() function rather than
reparameterising the model.
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Colon data: estimating a time by period interaction VII

@ The estimated hazard ratio, based on the above model, for patients
diagnosed 1985-94 compared to 1975-84 is 0.655 for the period up to 2
years of follow-up and 0.905 for the period after 2 years of follow-up (as we
previously saw).

@ To test if this interaction is statistically significant we could perform a LR

test, comparing the model with the interaction to the model without the
interaction.
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Colon data: estimating a time by period interaction VIII

R code and output

> fit <- coxph(Surv(tstart,surv_mm,event)~agegrp+sex+
year8594*timeband,
data=localised)
> anova(fit,test="Chisq")
Terms added sequentially (first to last)

loglik  Chisq Df Pr(>|Chil)

NULL -14442

agegrp -14360 163.661 3 < 2.2e-16 **x*
sex -14358 2.784 1  0.095209 .
year8594 -14342 32.681 1 1.086e-08 x**x
timeband -14342 0.000 O 1.000000
year8594:timeband -14337 10.648 1  0.001102 *x*

Signif. codes: O ‘***’ 0.001 ‘*x*’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1
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Colon data: estimating a time by period interaction IX

o Note that the previous z test statistic (slide 63) was 3.27. If we square this
we get a test statistic that is x3.

3.27° = 10.69

@ Both of these tests are testing the hypothesis that the interaction effect is
zero versus it is non-zero. The reason for the small difference in the test
statistic is that one is a likelihood ratio test and one is a Wald test.
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A look at the interaction models (for completeness) |

o Consider again a proportional hazards model with one single binary variable,
X1, which takes the value 1 if an exposure is present and 0 if it is absent

)\(le) = )\o(t) exp(ﬁle).

@ The hazard ratio for exposed to unexposed is given by exp(f1).

@ We now construct a second variable, X5 = Xit and include this in the model,
in addition to Xj. The variable X5 takes the value t if the exposure is present
and 0 if it is absent

)\(I‘|X) e )\0(1‘) exp(ﬂle + ﬂzXlt).

@ Based on this model, the hazard ratio for exposed to unexposed is given by
exp(B1 + Bet).

@ An estimate for 3, significantly different from O indicates that the hazard
ratio is non-constant over time. (B, > 0 indicates that the hazard ratio
increases with time and 3, < 0 indicates it decreases with time.
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A look at the interaction models (for completeness) I

@ This is not a general test of the proportional hazards assumption. It tests
against the alternative that the hazard ratio changes monotonically with time.

@ Another alternative might be that the hazard ratio is constant for an initial
time period, say t = 2 years, but takes on a different (constant) value for the
remainder of follow-up [5].

@ To test against this alternative, we construct a variable X, which takes the
value 1 if the exposure is present and t > 2 years, and 0 otherwise.

@ In the resulting model containing the variables X; and X5, the hazard ratio
for exposed to unexposed for the period t < 1 year is given by exp(/31) and
for t > 2 years it is given by exp(f1 + (2).

@ An estimate for 3, significantly different from O indicates that the hazard
ratio is different between the two time periods.
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Time-varying covariates |

@ We have been considering the situation where the effect of a covariate varies
with time.

@ It is possible that the underlying values of covariates can change during
follow-up. For example, blood pressure, occupational exposure to
carcinogens, parity, CD4 count, or cumulative exposure to cigarettes.

@ Another application is in observational studies where an intervention may
occur at any point in the follow-up. At the time of the intervention, the
explanatory variable associated with the intervention changes value from 0
(false) to 1 (true).

@ We highly recommend the time-splitting approach for modelling such data.

@ That is, we split to obtain a separate observation at every value of the
time-varying covariate.

o Exercise 22 examines a possible effect of marital bereavement (loss of
husband or wife) on all-cause mortality in the elderly (see Clayton & Hills,
§32.2).
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Time-varying covariates |l

@ Bereavement is a time-varying exposure — all subjects enter as not bereaved
but may become bereaved at some point during follow—up.

@ A distinction is made between internal variables (which relate to an individual
and can only be measured while a patient is alive) and external variables
(which do not necessarily require survival of the patient for their existence).

@ Care should be taken when modelling time-dependent covariates, particularly
with internal variables [4, 9].

Clements et al Biostatistics 11, Day 3 4-13 November, 2024



The tt option in coxph |

@ The tt () functions in coxph can also be used for estimating time-varying
effects of covariates.

@ Let's again fit the model where we allow the effect of period to differ in the
first 2 years of follow-up.
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The tt option in coxph Il

R code and output

> colon2 <- transform(colon, later=ifelse(year8594=="Diagnosed 85-94",1,0))

> summary(fit <- coxph(Surv(surv_mm,status=="Dead: cancer")~agegrp+sex+year8594+tt(later),
data=colon2, subset=(stage=="Localised"),
tt = function(x, t, ...) x*(t>=24)))

exp(coef) exp(-coef) lower .95 upper .95

agegrp45-59 0.9496 1.0531 0.7239 1.2457
agegrp60-74 1.3381 0.7474 1.0458 1.7120
agegrp75+ 2.2591 0.4427 1.7646 2.8922
sexFemale 0.9139 1.0942 0.8296 1.0068
year8594Diagnosed 85-94 0.6553 1.5261 0.5765 0.7447
tt(later) 1.3811 0.7241 1.1379 1.6763

> lincom(fit, "year8594Diagnosed 85-94+tt(later)", eform=TRUE)

Estimate 2.5 % 97.5 % Chisq
year8594Diagnosed 85-94+tt(later) 0.9049837 0.7822161 1.04702 1.801605
Pr(>Chisq)

year8594Diagnosed 85-94+tt(later) 0.1795186
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The tt option in coxph Il

@ The cutoff at 24 months was chosen arbitrarily. For the first two years of
follow-up the estimated hazard ratio was 0.656, while after two years the
hazard ratio was 0.656 x 1.381 = 0.905.

@ Choosing the cutpoint after inspection of the data will invalidate statistical
inference (i.e. reported P-values will be too low).

@ We have examined only one possible alternative to proportional hazards (a
step function with a single step at 24 months).

@ In practice, it is possible to fit any model of the form

)\(t|X) = Ao(t) exp(ﬁle + 52)(1)6(1'))7

where f(t) is a function of time.
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Tests of the PH assumption based on Schoenfeld residuals

o If the PH assumption holds then the Schoenfeld residuals (a diagnostic
specific to the Cox model) should be independent of time.

@ In its simplest form, when there are no ties, the unscaled Schoenfeld residual
for covariate x,, u = 1, ..., p, and for observation j observed to fail is

ZI'GRJ- Xuiexp(xiﬁ/\x)
ZfERj eXp(X;B\X)

fuj = Xuj —

@ That is, r,; is the difference between the covariate value for the failed
observation and the weighted average of the covariate values over all those
subjects at risk of failure when subject j failed.

@ A test of the PH assumption can be made by modelling the scaled Schoenfeld
residuals as a function of time and testing the hypothesis of a zero slope.
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Application to localised colon carcinoma |

R code and output

fit <- coxph(Surv(surv_mm/12,status=="Dead: cancer")~sex+agegrp+year8594,
+ data=colon, subset=(stage=="Localised"))
> ## redefine the print method (hack)
> print.cox.zph <- function(object, ...)
+ printCoefmat (object$table, ...)
> cox.zph(fit) # survival transformation

rho chisq P
sexFemale 0.0035758 0.0222461 0.8814
agegrp45-59 0.0101412 0.1782300 0.6729
agegrp60-74 0.0087225 0.1328470 0.7155
agegrp75+ -0.0486362 4.1019081 0.0428
year8594Diagnosed 85-94 0.0826805 12.1550765 0.0005
GLOBAL NA 47.3058019 0.0000
> rm(print.cox.zph) # tidy up

@ The tests suggest that there is evidence that the hazards are nonproportional
by calendar period (and possibly age).
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Application to localised colon carcinoma Il

@ Rather than just fitting a straight line to the residuals and testing the
hypothesis of zero slope (as is done by cox.zph) we can study a plot of the
residuals along with a smoother to assist us in determining how the mean
residual varies as a function of time.

@ The smooth illustrates how the log hazard ratio varies as a function of time.
We see, for example, that the effect of period is larger during the initial years
of follow-up.
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Application to localised colon carcinoma IlI

R code and output

> fit <- coxph(Surv(surv_mm,status=="Dead: cancer")~sext+agegrp+year8594,
data=colon, subset=(stage=="Localised"))
> plot(cox.zph(fit,transform=log) [5])

Beta(t) for year8594Diagnosed 85-94
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Application to localised colon carcinoma IV

R code and output
> plot(cox.zph(fit,transform=1log) [1])

Beta(t) for sexFemale
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A model including stage |

R code and output

> known <- transform(colon, stage=droplevels(stage, "Unknown"))
> fit <- coxph(Surv(surv_mm/12,status=="Dead: cancer")~
sex+agegrp+stage+year8594,
data=known)

> summary (fit)

n= 13208, number of events= 7186
(2356 observations deleted due to missingness)

coef exp(coef) se(coef) z Pr(>|zl)
sexFemale -0.04651 0.95456 0.02437 -1.908 0.0564 .
agegrp45-59 0.08546 1.08922 0.06382 1.339 0.1806
agegrp60-74 0.27355 1.31462 0.05868 4.662 3.13e-06 *x*x*
agegrp75+ 0.62357 1.86557 0.05937 10.504 < 2e-16 ***
stageRegional 0.83689 2.30916 0.04109 20.367 < 2e-16 **x*
stageDistant 2.11896 8.32251 0.02937 72.150 < 2e-16 *x*x
year8594Diagnosed 85-94 -0.15366 0.85756 0.02399 -6.406 1.49e-10 ***
Signif. codes: O “x**’ 0.001 ‘**’ 0.01 ‘%’ 0.05 .’ 0.1 ¢’ 1

@ Stage is categorised into Localised, Regional and Distant tumours.
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A model including stage Il

R code and output

> cox.zph(fit,transform=log)

rho chisq P
sexFemale 0.0095729  0.6612137 0.4161
agegrp45-59 -0.0070487  0.3572841 0.5500
agegrp60-74 -0.0103022 0.7643971 0.3820
agegrp75+ -0.0572602 23.4539894 0.0000
stageRegional 0.0211593  3.1912659 0.0740
stageDistant -0.0825732 44.9546333 0.0000
year8594Diagnosed 85-94  0.0094099 0.6431899 0.4226
GLOBAL NA 173.5798931 0.0000

@ There is evidence that the hazards are heavily non-proportional by stage.

@ A plot of the empirical hazards (slide 84) suggests that individuals diagnosed
with distant metastases have proportionally much higher mortality early in
the follow-up but once they have survived several years their mortality is not
that much higher than the other age groups.

@ The plots of the fitted hazards (slide 85) show the effect of the assumption of
proportional hazards.
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A model including stage Il

R code and output

> fit <- muhaz2(Surv(surv_mm,status=="Dead: cancer")-stage,
data=known)
> plot(fit)
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A model including stage IV

R code and output

> fit <- coxph(Surv(surv_mm,status=="Dead: cancer")-stage,
data=known)
> plot(coxphHaz(fit,newdata=data.frame(stage=levels(known$stage)))
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A model including stage V

R code and output

> plot(coxphHaz(fit,newdata=data.frame(stage=levels(known$stage))),
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A model including stage VI

R code and output

> fit <- coxph(Surv(surv_mm,status=="Dead: cancer")-stage,
data=known)
> plot(cox.zph(fit)[2])

Beta(t) for stageDistant
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The stratified Cox model |

The Cox model assumes that the baseline hazard (e.g., instantaneous
mortality rate in the reference group) is an arbitrary function of time.

The hazard functions for each of the other groups are assumed to be
proportional to the baseline.

It is possible to relax this assumption to allow separate baseline hazards for
different groups, say for each level of age at diagnosis.

This is known as a stratified proportional hazards model and is a useful
method for modelling data where non-proportional hazards are suspected for
a factor that is not of primary interest.

A model stratified on agegrp is analogous to including an agegrp:time
interaction in a Poisson regression model.

Use the strata() term in the coxph formula to specify the strata variables.

The mathematical formula is:

A(t]x, ) = Aj(t) exp(Bx)

where j is an index for the strata.
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The stratified Cox model Il

R code and output

> fit <- coxph(Surv(surv_mm/12,status=="Dead: cancer")-~
sex+year8594+strata(agegrp) ,
data=colon, subset=(stage=="Localised"))
> summary (fit)

n= 6274, number of events= 1734

coef exp(coef) se(coef) z Pr(>|zl)
sexFemale -0.08958 0.91431 0.04938 -1.814 0.0697 .
year8594Diagnosed 85-94 -0.28200 0.75427 0.04942 -5.707 1.15e-08 *x**

Signif. codes: 0 ‘*x*’ 0.001 ‘*%’> 0.01 ‘%’ 0.05 ‘.’ 0.1 ¢ ’> 1
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Summary of Day 3 |

@ We have introduced the Cox proportional hazards regression model and
shown how it is very similar to Poisson regression.

@ The Cox model assumes proportional hazards (as does Poisson regression),
which means that the estimated HRs between groups are constant over time,
although we can relax this assumption by modelling interactions.

@ The proportional hazards assumption can be tested by fitting time by
covariate interactions, which allows effects to vary over time.

@ The PH assumption in Cox regression can also be tested using scaled
Schoenfeld residuals.
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Summary of Day 3 Il

@ Poisson regression models assume constant hazards or piecewise constant
hazards over time, whereas the Cox model allows the hazard to vary freely
over time.

@ Can make Poisson regression more ‘Cox-like’ by making the pieces smaller.

@ Hazard ratios from a Cox model are automatically adjusted for confounding
by the underlying time scale. One should choose an appropriate timescale.
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Exercises for Friday afternoon

10.

11.
12.
13.

Localised melanoma: modelling cause-specific mortality using Cox regression.
[This is a key exercise]

Examining the proportional hazards hypothesis (localised melanoma). [This is
also a key exercise]

Cox regression with observed (all-cause) mortality as the outcome.
Cox model for cause-specific mortality for melanoma (all stages).
Modelling the diet data using Cox regression.
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