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Topics for Day 2

Estimands and estimators
Hazards and rates
Time scales
Modelling rates, using Poisson regression
Interactions and parameterisation
Confounding by time
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Estimands, estimators and estimates

An estimand is what we (conceptually) want to calculate – which often
relates to our research question. An example is the proportion of individuals
who are alive at five years after study entry.
An estimator is a calculation process (e.g. a formula or an algorithm) to
calculate an estimate. An example is the Kaplan-Meier estimator for survival
(that is, the formula).
An estimate is the resulting calculation from applying an estimator to some
data. An example would be the “estimated” five-year survival from a
Kaplan-Meier estimator from a particular study with follow-up to a specific
date.
We often need to consider how to interpret an estimator for a given study
design. For example, an odds ratio estimate using a conditional logistic
regression estimator from a nested case-control study with incidence density
sampling can be interpreted as a hazard ratio – which may be the estimand
of interest.
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Estimands and estimators

Estimand Estimator Notes
Survival Kaplan-Meier Non-parametric

Poisson regression Awkward post-estimation
Cox model + Breslow Proportional hazards
Flexible parametric model

Cumulative hazard Nelson-Aalen Non-parametric
Hazard Nelson-Aalen + Kernel den-

sity
Smoothed

Rate count/(person-time) Poisson distribution
Poisson regression

Rate ratio Poisson regression
Hazard ratio Cox model Non-parametric baseline

Flexible parametric model
Time-dependent rate ratio Poisson model
Time-dependent hazard ratio Cox model Inflexible implementations

Flexible parametric model
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Hazard rates and the hazard function, λ(t) I

In contrast to the survival function, which describes the probability of not
failing before time t, the hazard function focuses on the failure rate at time t
among those individuals who are alive at time t. So, the survival function is
formally defined for a random time variable T by

S(t) = Pr(T > t) = 1 − F (t). (1)

where F (t) is the failure proportion (aka the cumulative distribution
function).
The hazard function is formally defined for a random time variable T by

λ(t) = lim
∆t→0

Pr(t ≤ T < t + ∆t | T ≥ t)
∆t (2)

The hazard function shows how the hazard rate varies over time.
The hazard function, λ(t), is the instantaneous event rate at time t,
conditional on survival up to time t.
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Hazard rates and the hazard function, λ(t) II
From Equation 2, one can see that λ(t)∆t may be viewed as the
‘approximate’ probability of an individual who is alive at time t experiencing
the event in the next small time interval ∆t.
The units are events per unit time.
Note that the hazard is a rate, not a probability, so λ(t) can take on any
value between zero and infinity, as opposed to S(t) which is restricted to the
interval [0, 1].
A lower value for λ(t) implies a higher value for S(t) and vice versa.
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Hazard rates and the hazard function, λ(t) III

There is a close relationship between the hazard function and survival.
First, let the hazard λ be constant. Then survival S(t) between time 0 and
time t is approximately 1 − λt. We can improve on this calculation by
breaking t into n segments and calculate the probability of surviving each of
the segments; letting n become large, we have that

S(t) = lim
n→∞

n∏
i=1

(
1 − λ

t
n

)

= lim
n→∞

n∏
i=1

exp
(

−λ
t
n

)

= lim
n→∞

exp
(

−
n∑

i=1
λ

t
n

)
= exp(−λt)

This is the survival function for an exponential distribution.
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Hazard rates and the hazard function, λ(t) IV

More generally, for a time-varying hazard, we have that

S(t) = lim
n→∞

n∏
i=1

(
1 − λ

(
t i
n

)
t
n

)

= lim
n→∞

n∏
i=1

exp
(

−λ

(
t i
n

)
t
n

)

= exp
(

− lim
n→∞

n∑
i=1

λ

(
t i
n

)
t
n

)

= exp
(

−
∫ t

0
λ(u)du

)
(3)

where Λ(t) =
∫ t

0 λ(u)du is the area under the hazard function between 0 and
t (the cumulative hazard).
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Hazard rates and the hazard function, λ(t) V

As noted earlier, the hazard function is the negative change in log
survival, such that

− d
dt log(S(t)) = λ(t)

and the hazard function is the rate of decline in survival, such that

−dS(t)
dt /S(t) = λ(t)

Some statisticians will explain that the hazard is the instantaneous rate,
where the rate r(s, t) between times s and t can be formally defined as

r(s, t) = Expected count
Expected person-time =

∫ t
s S(u)λ(u)du∫ t

s S(u)du

and, if s and t are close, then r(s, t) ≈ λ
( s+t

2
)
.
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Choice of time scale

There are several time scales along which rates might vary. These differ from
one another only in the choice of time origin, the point at which time is zero.
Consider the following questions?

What is the time?
How old are you?
For how long have you lived at your current address?

What is the time origin for each?
In which units did you specify time? Could different units have been used?
Time progresses in the same manner but, in answering these questions, we
have applied a different time origin and used different units.
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A sample of 35 patients diagnosed with colon carcinoma
during 1985–94; followed-up until the end of 1995

1984 1986 1988 1990 1992 1994 1996

Date

0 2 4 6 8 10

Year since entry

Figure: Calendar time (left) and time from entry in years (right)
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Common time scales in epidemiology

Origin Time scale
Birth Age
A fixed date Calendar time
First exposure Time exposed
Entry into study Time in study
Disease onset Time since onset
Diagnosis Time since diagnosis
Start of treatment Time on treatment

In many of the methods used in survival analysis, effects are adjusted for the
underlying time scale. Choice of time scale therefore has important
implications.
On many time scales, subjects do not enter follow-up at the time origin,
t = 0.
To deal with these issues, the Surv function allows for both the entry and
exit times to be specified prior to the event indicator.
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Censoring and truncation I

With right censoring, the most common form of censoring in medical studies,
we know that the event has not occurred during follow-up, but we are unable
to follow-up the patient further. We know only that the true survival time of
the patient is greater than a given value.
Less common is left-censoring, where we know the event has occurred prior
to the time of observation but we don’t know exactly when.
Interval censoring occurs when we know that the event has occurred between
two time points but don’t know the exact date (e.g. HIV infection between
two test dates, or cancer between two screens).
Standard methods for survival analysis assume that all censored data are
right censored and we will assume that this is the case.
Special methods are required for analysing left censored and interval censored
data, which will not be covered in this course.
Censoring, in general, refers to the situation where we can identify the
individuals in our study but we do not have precise information on the event
time for all individuals (we know only that it is in some interval).
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Censoring and truncation II
A second feature of survival studies, often confused with censoring, is
truncation.
Truncation refers to the situation where certain subjects are screened such
that the investigator is not aware of their existence.
Left truncated data occurs when we only observe the individual if they are
event free after a certain follow-up time. For example, late entry to the study
or using age as the primary time scale.
The distribution is conditional on entry at the left truncation time.
Left truncation will change who is in the risk set at different times and the
person-time observed.
Methods for left truncated data are available for:

1 Hazard estimation
2 Poisson regression
3 Cox regression
4 Generalised survival models

Right truncated data occurs when only individuals who experience the event
of interest are included in the study. Special methods of analysis are required
for their analysis (see Klein & Moeschberger [1]).
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Graphical representation of censoring and truncation

0 2 4 6 8 10

0.
00

0.
04

0.
08

Exact time

Time (years)

f(
t)

●

0 2 4 6 8 10

0.
00

0.
04

0.
08

Right censored

Time (years)

f(
t)

0 2 4 6 8 10

0.
00

0.
04

0.
08

Left censored

Time (years)

f(
t)

0 2 4 6 8 10

0.
00

0.
04

0.
08

Interval censored

Time (years)

f(
t)

0 2 4 6 8 10

0.
00

0.
04

0.
08

0.
12

Left truncated, exact time

Time (years)

f(
t) ●

0 2 4 6 8 10
0.

00
0.

04
0.

08
0.

12

Left truncated
right censored

Time (years)

f(
t)

Clements et al Biostatistics III, Day 2 4–13 November, 2024 15 / 90



Informative right-censoring I

To make it possible for statistical analysis we make the crucial assumption
that, conditional on the values of any explanatory variables, censoring is
unrelated to prognosis (the probable course and outcome of the disease).
The statistical methods used for survival analysis assume that the prognosis
for an individual censored at time t will be no different from those individuals
who were alive at time t and were under follow-up past time t.
One way to think of this is that, conditional on the values of any explanatory
variables, the individuals censored at time t should be a random sample of
the individuals at risk at time t.
This is known as noninformative censoring. Under this assumption, there is
no need to distinguish between the different reasons for right-censoring.
When withdrawal from follow-up is associated with prognosis, this is known
as informative censoring and standard methods of analysis will result in
biased estimates.
Common methods for controlling for informative censoring are to stratify or
condition on those explanatory factors on which censoring depends.
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Informative right-censoring II

Censoring due to termination of the study, or accidental death, are usually
uninformative, but careful consideration must be given to other forms of
censoring.
Determining whether or not censoring is informative is not a statistical issue
— it must be made based on subject matter knowledge.
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The diet data I

For the diet data
- date of entry = doe
- date of exit = dox
- event indicator = chd

R code
Surv(tstop,event) # right censored
Surv(tstart,tstop,event) # left truncated and right censored

Defines time to event for many survival analysis procedures.
To use time since entry as the time scale:

R code and output
> scale <- 365.24
> with(diet, Surv((dox-doe)/scale, chd))
[1] 16.7916986+ 19.9594787+ 19.9594787+ 15.3953565+ 1.4949075
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The diet data II

Each individual enters the study (becomes ‘at risk’) at follow-up time zero
(doe is the calendar time origin).
By dividing by 365.24 we are scaling the time unit from days to years.
The event is defined by chd.
To use attained age as the time scale we specify

R code and output
> with(diet, Surv((doe-dob)/scale, (dox - dob)/scale, chd))
[1] (49.38944,66.18114+] (47.49754,67.45701+] (46.46534,66.42482+]

Individuals enter the study at doe (as before) but the time origin is now the
date of birth.
To use calendar time as the time scale we specify (using continuous years
rather than Dates)

R code
Surv(yoe, yox, chd)
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The diet data III

Equivalently, we could define the origin as 1 January 1900 and then use
Dates:

R code and output
> origin <- as.Date("1900-01-01")
> with(diet, Surv((doe-origin)/scale, (dox - origin)/scale, chd))
[1] (60.12485,76.91655+] (56.95707,76.91655+] (56.95707,76.91655+]
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Hazard smoothing

For a non-parametric estimator of survival, we can calculate the steps in the
cumulative hazard function. If we smooth those steps, we can estimate the
hazard function – much like we do for density estimation.
The main challenge with the smoothing is choosing the bandwidth, or the
amount of data, to include in the smoother.
Advice: do not over-interpret the estimated smooth hazard functions.
The biostat3 package provides a Surv interface to the muhaz function from
the muhaz package. For right censored and possibly left truncated data, we
suggest using the bshazard function from the bshazard package.
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CHD rate with time-since-entry as the time scale

R code
plot(bshazard(Surv((dox-doe)/365.24, chd) ~ 1, data=diet),

ylim=c(0,0.02), xlab="Time since entry (years)")
lines(muhaz2(Surv((dox-doe)/365.24, chd) ~ 1, data=diet),

lty=3, lwd=2)
legend("bottomleft",legend=c("bshazard","+95% CI","muhaz"), lty=1:3,

col=c("black","grey","black"), lwd=c(1,10,2), bty="n")
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CHD rate with attained age as the time scale

R code
plot(bshazard(Surv((doe-dob)/365.24, (dox-dob)/365.24, chd) ~ 1,

data=diet),
ylim=c(0,0.02), xlab="Attained age (years)")
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CHD rate with calendar time as the time scale

R code
plot(bshazard(Surv(year(doe), year(dox), chd) ~ 1, data=diet),

ylim=c(0,0.02),xlab="Calendar time (years)")
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R digression: formulas and factors I

Let the linear predictor for the right-hand-side of a formula be represented by
η (pronounced “eta”), where η = Xβ for design matrix X and parameters β

Example data (similar to the diet data-frame):
df = data.frame(hieng=factor(c("low","low","low","high","high","high"),

levels=c("low","high")),
job=factor(c("driver","conductor","bank",

"driver","conductor","bank"),
levels=c("driver","conductor","bank")),

x=1:6)

Continuous var with intercept (ncol=2)

> model.matrix(~x,df)
(Intercept) x

1 1 1
2 1 2
3 1 3
4 1 4
5 1 5
6 1 6

η = β0 + β1x

Continuous var - intercept (ncol=1)

> model.matrix(~x-1,df)
x

1 1
2 2
3 3
4 4
5 5
6 6

η = β1x
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R digression: formulas and factors II
2-level factor with intercept (ncol=2)

> model.matrix(~hieng,df)
(Intercept) hienghigh

1 1 0
2 1 0
3 1 0
4 1 1
5 1 1
6 1 1

η = β0 + β1I(hieng = high)

3-level factor with intercept (ncol=3)

> model.matrix(~job,df)
(Intercept) jobconductor jobbank

1 1 0 0
2 1 1 0
3 1 0 1
4 1 0 0
5 1 1 0
6 1 0 1

η = β0 + β1I(job = conductor) + β2I(job = bank)

2-level factor - intercept (ncol=2)

> model.matrix(~hieng-1,df)
hienglow hienghigh

1 1 0
2 1 0
3 1 0
4 0 1
5 0 1
6 0 1

η = β1I(hieng = low) + β2I(hieng = high)

3-level factor - intercept (ncol=3)

> model.matrix(~job-1,df)
jobdriver jobconductor jobbank

1 1 0 0
2 0 1 0
3 0 0 1
4 1 0 0
5 0 1 0
6 0 0 1

η = β1I(job = driver) + β2I(job =
conductor) + β3I(job = bank)
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R digression: formulas and factors III
Main effects model with hieng and job:

> model.matrix(~hieng+job,df)
(Intercept) hienghigh jobconductor jobbank

1 1 0 0 0
2 1 0 1 0
3 1 0 0 1
4 1 1 0 0
5 1 1 1 0
6 1 1 0 1

η = β0 + β1I(hieng = high) + β2I(job = conductor) + β3I(job = bank)

Main effect and interaction model with hieng and job:

> model.matrix(~hieng+job+hieng:job,df)
(Intercept) hienghigh jobconductor jobbank hienghigh:jobconductor hienghigh:jobbank

1 1 0 0 0 0 0
2 1 0 1 0 0 0
3 1 0 0 1 0 0
4 1 1 0 0 0 0
5 1 1 1 0 1 0
6 1 1 0 1 0 1

η = β0 + β1I(hieng = high) + β2I(job = conductor) + β3I(job = bank) + β4I(hieng = high & job =
conductor) + β5I(hieng = high & job = bank)
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R digression: formulas and factors IV
job main effect and interaction between hieng and job:

> model.matrix(~job+hieng:job,df)
(Intercept) jobconductor jobbank jobdriver:hienghigh jobconductor:hienghigh

1 1 0 0 0 0
2 1 1 0 0 0
3 1 0 1 0 0
4 1 0 0 1 0
5 1 1 0 0 1
6 1 0 1 0 0

jobbank:hienghigh
1 0
2 0
3 0
4 0
5 0
6 1

η = β0 + β1I(job = conductor) + β2I(job = bank) + β3I(hieng = high & job = driver) + β4I(hieng =
high & job = conductor) + β5I(hieng = high & job = bank)
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R digression: formulas and factors V
hieng main effect and interaction between hieng and job:

> model.matrix(~hieng+hieng:job,df)
(Intercept) hienghigh hienglow:jobconductor hienghigh:jobconductor hienglow:jobbank

1 1 0 0 0 0
2 1 0 1 0 0
3 1 0 0 0 1
4 1 1 0 0 0
5 1 1 0 1 0
6 1 1 0 0 0

hienghigh:jobbank
1 0
2 0
3 0
4 0
5 0
6 1

η = β0 + β1I(hieng = high) + β2I(hieng = low & job = conductor) + β3I(hieng = high & job =
conductor) + β4I(hieng = low & job = bank) + β5I(hieng = high & job = bank)
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R digression: formulas and factors VI

hieng and x main effects:

> model.matrix(~hieng+x,df)
(Intercept) hienghigh x

1 1 0 1
2 1 0 2
3 1 0 3
4 1 1 4
5 1 1 5
6 1 1 6

η = β0 + β1I(hieng = high) + β2x

hieng and x main effects and interaction between
hieng and x:

> model.matrix(~hieng+x+hieng:x,df)
> model.matrix(~hieng+x+hieng:x,df)

(Intercept) hienghigh x hienghigh:x
1 1 0 1 0
2 1 0 2 0
3 1 0 3 0
4 1 1 4 4
5 1 1 5 5
6 1 1 6 6

η = β0 + β1I(hieng = high) + β2x + β3I(hieng =
high)x
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Estimating CHD rates according to energy intake I

The new biostat3::survRate function tabulates the number of events and
person-time at risk and calculates event rates.

R code
> survRate(Surv((dox-doe)/365.24/1000, chd) ~ hieng, data=diet)

hieng tstop event rate lower upper
hieng=low low 2.059487 28 13.595619 9.034190 19.64946
hieng=high high 2.544308 18 7.074616 4.192866 11.18094

The unit for the person-time T is 1000 person-years and the rates are per
1000 person-years.
The rates represent the overall rates of CHD in each group during follow-up.
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Estimating CHD rates according to energy intake II

The incidence rate ratio (IRR) for individuals with a high compared to low
energy intake is 7.1/13.6 = 0.52.
That is, without controlling for any possible confounding factors, we estimate
that individuals with a high energy intake have a CHD risk that is
approximately half that of individuals with a low energy intake.
This is sometimes called a ‘crude estimate’; it is not adjusted for potential
confounders.
Is this a true effect? What important confounder might we need to consider?
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A model for the incidence rate I

When working with rates, we believe that effects are most likely to be
multiplicative.
That is, we believe that the rate in the high energy group (λ1) is likely to be
a multiple of the rate in the low energy group (λ0). The multiplication factor
is the incidence rate ratio, θ.

λ1 = λ0θ, for example, 7.1 = 13.6 × 0.52

IRR = λ1
λ0

= θ, for example, 0.52 = 7.1/13.6
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A model for the incidence rate II
If the explanatory variable X is equal to 1 for individuals with a high energy
intake and 0 for individuals with a low energy intake then we can write

λ(X ) = λ0 × θX

So for each increase of one unit in X the rate increases with a multiple of θ,
i.e. the effects are multiplicative.
That is,

λ = λ0 when X = 0

λ = λ0θ when X = 1

For instance, the rate λ1 among the individuals with high energy intake is

λ1 = λ(1) = λ0 × θ1 = 13.6 × 0.52 = 7.1
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A model for the incidence rate III
In practice, it is more convenient to work on a logarithmic scale.

λ = λ0 × θX

= exp
(
log
(
λ0 × θX))

= exp(log(λ0) + X log(θ))
= exp(β0 + β1X )

where β0 = log(λ0) and β1 = log(θ) is the log IRR.
On the log scale, the effects are additive. For an increase of one unit in X ,
the log rate increases with an constant log(θ), or β1.
log(λ) = β0 + β1X is a Poisson regression model with one binary explanatory
variable, X .
Exercise: What are the estimates of β0 and β1?
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A model for the incidence rate IV

The estimate of β0 is the log of the rate at baseline, log(13.6)
The estimate of β1 is the log of the IRR comparing group 1 to group 0,
log(0.52)
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Three regression models commonly applied in epidemiology

Linear regression
µ = β0 + β1X

Logistic regression

log
(

π

1 − π

)
= β0 + β1X

Poisson regression
log(λ) = β0 + β1X

In each case β1 is the effect per unit of X , measured as a change in the mean
(linear regression); the change in the log odds (logistic regression); the
change in the log rate (Poisson regression).
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The effect of high energy, using Poisson regression

hieng X D Y Rate per 1000
low 0 28 2059.4 13.60

high 1 18 2544.2 7.07

If we assume a Poisson regression model

log(λ) = β0 + β1X
X = 0 : log(28/2059.4) = β0 = −4.3
X = 1 : log(18/2544.2) = β0 + β1

log
(

18/2544.2
28/2059.4

)
= β1

−0.6532 = β1 = log(IRR)
0.52 = exp(β1) = IRR
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Poisson regression model for rates

We assume that the counts are Poisson distributed. If the count is Y and the
person-time is T (assumed fixed), then for the above model we have that

λ = E
(

Y
T

)
= exp(β0 + β1X )

=⇒ E (Y ) = exp(β0 + β1X )T
= exp(β0 + β1X + log(T ))

where log(T ) is termed an offset, which is a component of the linear
predictor that does not have a coefficient.
Importantly, if we use the count as the outcome and the log of the
person-time as an offset in a Poisson regression, then we are modelling rates.
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Poisson regression in R I

R code and output
> library(broom) # tidy()
> diet <- transform(diet, y = as.numeric(dox-doe)/365.24)
> fit <- glm(chd ~ hieng + offset(log(y)), data=diet, family=poisson)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.2980 0.1890 -22.744 <2e-16 ***
hienghigh -0.6532 0.3021 -2.162 0.0306 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> broom::tidy(fit, conf.int=TRUE, exponentiate=TRUE)
# A tibble: 2 × 7

term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0.0136 0.189 -22.7 1.63e-114 0.00916 0.0193
2 hienghigh 0.520 0.302 -2.16 3.06e- 2 0.283 0.933
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Poisson regression in R II

Poisson regression is one type of generalised linear model (GLM)
The Poisson model is estimated using the method of maximum likelihood.
Confidence intervals are constructed by assuming the estimated regression
parameters are normally distributed.
That is, confidence intervals are constructed on the log scale, as is standard
for ratio measures, with an interval (exp(β̂ − 1.96se), exp(β̂ + 1.96se)).
We see that the confidence limits for the IRR are simply the exponentiated
limits of the log IRR.
As such, the CI for the IRR is not symmetric around the point estimate.
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What happened to the time scale?

The Poisson model we just fitted did not take into account that rates may
vary over follow-up time.
We used time since entry as the time scale, but the rate we estimated was
the ‘overall rate’ of CHD throughout the follow-up, i.e. simply all events of
CHD divided by total person-time at risk.
When we estimate the overall rate, we assume that the rates (13.6 per 1,000
person-years among low energy group, and 7.1 among high energy group) are
constant throughout the follow-up time.
We will get back to how to model rates which vary over time later. But first
we will have a look at how to model main effects and interactions, in general,
in Poisson regression.
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Categorical exposures with more than two levels I

The variable hieng has two levels
The variable eng3, created below, has 3 levels.

R code and output
> diet <- transform(diet, eng3 = cut(energy, c(0,1500,2500,3000,4500,Inf),

right=FALSE))
> survRate(Surv((dox-doe)/365.24/1000, chd) ~ eng3, data=diet)

tstop event rate lower upper
eng3=[1.5e+03,2.5e+03) 0.9466597 16 16.901532 9.660686 27.44703
eng3=[2.5e+03,3e+03) 2.0173174 22 10.905572 6.834464 16.51117
eng3=[3e+03,4.5e+03) 1.6398177 8 4.878591 2.106229 9.61277
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Categorical exposures with more than two levels II

To include eng3 in regression functions we can use indicator variables (0/1 or
FALSE/TRUE) for the 3 levels.

R code and output
> diet <- transform(diet,

X1 = energy<2500,
X2 = energy>=2500 & energy<3000,
X3 = energy>=3000 & energy<4500)

> tidy(glm(chd ~ X2 + X3 + offset(log(y)), data=diet, family=poisson),
conf.int=TRUE, exponentiate=TRUE)

term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0.0169 0.250 -16.3 6.64e-60 0.00991 0.0266
2 X2TRUE 0.645 0.329 -1.33 1.82e- 1 0.341 1.25
3 X3TRUE 0.289 0.433 -2.87 4.11e- 3 0.117 0.656

The variable (X1) that indicates the category with the lowest energy intake is
omitted, meaning this is the reference category.
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Categorical exposures with more than two levels III

In terms of the parameters

log(λ) = β0 + β2X2 + β3X3

= β0 (level 1)
= β0 + β2 (level 2)
= β0 + β3 (level 3)
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Automatic generation of indicators using factor variables I

The baseline is, by default, the first level, but this can be changed to (say)
the third level (3000–) with

R code and output
> transform(diet, eng3 = relevel(eng3,"[3e+03,4.5e+03)")) |>

glm(formula=chd ~ eng3 + offset(log(y)), family=poisson) |>
tidy(conf.int=TRUE, exponentiate=TRUE)

term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0.00488 0.354 -15.1 3.18e-51 0.00223 0.00908
2 eng3[1.5e+03,2.5e+03) 3.46 0.433 2.87 4.11e- 3 1.52 8.54
3 eng3[2.5e+03,3e+03) 2.24 0.413 1.95 5.14e- 2 1.04 5.35
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Metric (continuous) exposure variables I

The effect of energy on failure, when energy is measured as a continuous
variable

R code and output
> tidy(glm(chd ~ energy + offset(log(y)), data=diet, family=poisson),

conf.int=TRUE, exponentiate=TRUE)
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0.236 0.976 -1.48 0.139 0.0344 1.58
2 energy 0.999 0.000364 -3.16 0.00159 0.998 1.00

For each 1 unit increase in energy intake, the CHD rate is reduced by 0.1%.
The units of energy are kcals per day. The intercept term is the rate when
energy intake is zero (which is expected to be outside the observed values).
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Metric (continuous) exposure variables II
R code and output
> summary(diet$energy)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1748 2537 2803 2829 3110 4396

Clements et al Biostatistics III, Day 2 4–13 November, 2024 48 / 90



Metric (continuous) exposure variables III

To get the IRR for an increase of, say, 100 units and centering the effect for
energy at 2800 kcals/day:

R code and output
> tidy(glm(chd ~ I((energy-2800)/100) + offset(log(y)), data=diet, family=poisson),

conf.int=TRUE, exponentiate=TRUE)
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0.00940 0.158 -29.6 9.31e-193 0.00677 0.0126
2 I((energy - 2800)/100) 0.891 0.0364 -3.16 1.59e- 3 0.829 0.956

The estimated IRR is 0.99885100 = 0.8913. That is, for each 100 unit
increase in energy intake, we estimate that the CHD rate is reduced by 11%.
Also the intercept term is the rate when energy is 2800 kcals/day.
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The main effects model — constant effect over strata

If the true effect of exposure does not vary across strata of another variable
we can use a main effects model.
For example, if the estimates of high energy differ only randomly over age, we
can consider a model in which the true effect is constant over age, i.e. no
interaction.
This allows us to combine the information from different strata to yield a
single estimate of exposure effect.
This combined estimate of the effect we call the main effect, which is then
controlled for the stratifying (confounding) variable(s).
Statistical tests for the presence of effect modification are available (although
there are no statistical tests for confounding).
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Main effects model using Poisson regression

R code and output
> tidy(glm(chd ~ hieng + job + offset(log(y)), data=diet, family=poisson),

conf.int=TRUE, exponentiate=TRUE)
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0.0132 0.312 -13.9 9.41e-44 0.00679 0.0233
2 hienghigh 0.525 0.302 -2.13 3.29e- 2 0.285 0.941
3 jobconductor 1.36 0.393 0.779 4.36e- 1 0.627 2.99
4 jobbank 0.884 0.365 -0.337 7.36e- 1 0.438 1.86

The second row reported is the effect of hieng controlled for job, and the
next two are the effects of job controlled for hieng.
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Models and parameters in Poisson regression I

In the Poisson regression model we estimated 4 parameters. One parameter
(the intercept) is a log rate and the other three are log incidence rate ratios.
The model is

λ(hieng , job) = exp (β0 + β1I(hieng = high) + β2I(job = cond)+
β3I(job = bank))

exp(β0) is the predicted rate (not rate ratio) for an individual with all
covariates at the reference level (i.e. a driver with a low energy intake, or
λ(hieng = low , job = driver)).

Clements et al Biostatistics III, Day 2 4–13 November, 2024 52 / 90



Models and parameters in Poisson regression II

The estimated incidence rate ratio for a high energy diet versus a low energy diet is

λ(hieng = high, job)
λ(hieng = low , job) = exp (β0 + β1 + β2I(job = cond) + β3I(job = bank))

exp (β0 + β2I(job = cond) + β3I(job = bank))
= exp(β1)

which is independent of the type of job. The estimated incidence rate ratio
comparing a conductor to a driver is

λ(hieng , job = cond)
λ(hieng , job = driver) = exp (β0 + β1I(hieng = high) + β2)

exp (β0 + β1I(hieng = high))
= exp(β2)

which is independent of high/low energy diet.
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Parameter estimates

R code and output
> summary(glm(chd ~ hieng + job + offset(log(y)), data=diet, family=poisson))

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.3250 0.3118 -13.872 <2e-16 ***
hienghigh -0.6448 0.3022 -2.134 0.0329 *
jobconductor 0.3063 0.3934 0.779 0.4362
jobbank -0.1230 0.3651 -0.337 0.7363
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Effect modification

If the true effect of exposure varies across strata of another variable there is
said to be ‘effect modification’ — the effect of exposure cannot then be
represented by one IRR.
Does job modify the effect of hieng? If we estimate the IRR of high energy
separately in all three job groups we get
job Effect of hieng
driver 0.41
conductor 0.66
bank 0.52

The figures represent the incidence rate ratios (comparing high to low energy
intake) within each job category.
If the effect of high energy is not modified by job then we would expect these
to be similar.
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Interaction model using Poisson regression

R code and output
> tidy(glm(chd ~ hieng*job + offset(log(y)), data=diet, family=poisson),

conf.int=TRUE, exponentiate=TRUE)
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0.0145 0.354 -12.0 4.45e-33 0.00661 0.0269
2 hienghigh 0.410 0.612 -1.45 1.46e- 1 0.109 1.30
3 jobconductor 1.14 0.500 0.257 7.98e- 1 0.418 3.09
4 jobbank 0.813 0.456 -0.452 6.51e- 1 0.337 2.08
5 hienghigh:jobconductor 1.60 0.816 0.573 5.67e- 1 0.325 8.42
6 hienghigh:jobbank 1.26 0.764 0.305 7.61e- 1 0.288 6.06

0.41 is the effect of hieng when job is at its first level.
1.14 and 0.81 are the effects of job when hieng is at its first level.
1.60 and 1.26 are the interactions between hieng and job.
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Parameters for the interaction model I
We have the regression model

λ(hieng , job) = exp (β0 + β1I(hieng = high)+
β2I(job = cond) + β3I(job = bank)+
β4I(job = cond & hieng = high)+
β5I(job = bank & hieng = high))

The estimated incidence rate ratio for a high energy diet versus a low energy diet
is

λ(hieng = high, job)
λ(hieng = low , job)

= exp (β0 + β1 + (β2 + β4)I(job = cond) + (β3 + β5)I(job = bank))
exp (β0 + β2I(job = cond) + β3I(job = bank))

= exp(β1 + β4I(job = cond) + β5I(job = bank))

which is dependent on the type of job (unless β4 = 0 and β5 = 0).
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Parameters for the interaction model II

The estimated incidence rate ratio comparing a conductor to a driver is

λ(hieng , job = cond)
λ(hieng , job = driver)

= exp (β0 + (β1 + β4)I(hieng = high))
exp (β0 + β1I(hieng = high))

= exp(β2 + β4I(hieng = high))

which is dependent on high/low energy diet (unless β4 = 0).
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Testing for interaction using R

A test of interaction tests if the interactions (β4 and β5) are equal to zero.

R code and output
> anova(fit)
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 336 262.82
hieng 1 4.8184 335 258.00 0.02816 *
job 2 1.4781 333 256.52 0.47758
hieng:job 2 0.3332 331 256.19 0.84655
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

No evidence of a statistically significant interaction (p = 0.85).
This is a so-called Wald test, which approximates the likelihood ratio test.
We could also use a likelihood ratio test, where we compare the
log-likelihoods from the main effects model and the interaction model.
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R digression: R formulas

Formula Equivalent formula
y ~ a*b y ~ a + b + a:b
y ~ (a+b+c)^2 - a:c y ~ a + b + c + a:b + b:c
y ~ a - 1 y ~ a + 0

Moreover, you can use the usual mathematical operators in the formula if you
wrap the formula term in I() (e.g. y~I((doe-dob)/365.24)).
As a reminder, the term log(x) will lead to a parameter being estimated for
that term, while the offset term offset(log(x)) will treat the value as a
constant and not estimate a parameter.
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Reparameterising the model to directly estimate the effect
of exposure in each stratum I

We are often interested in the effect of the exposure (comparison between
high and low energy intake) for each level of the modifier (job).
We can reparameterise the model to directly estimate parameters of interest
(the three IRRs, one for each job).

job hieng=0 hieng=1
driv 1.0 exp(β3)

cond 1.0 exp(β4)

bank 1.0 exp(β5)
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Reparameterising the model to directly estimate the effect
of exposure in each stratum II
We have the regression model

λ(hieng , job) = exp (β0+
β1I(job = cond) + β2I(job = bank)+
β3I(job = driver & hieng = high)+
β4I(job = cond & hieng = high)+
β5I(job = bank & hieng = high))

The estimated incidence rate ratio for a high energy diet versus a low energy diet
is

λ(hieng = high, job)
λ(hieng = low , job)

=
exp (β0 + β3I(job = driver) + (β1 + β4)I(job = cond) + (β2 + β5)I(job = bank))

exp (β0 + β1I(job = cond) + β2I(job = bank))
= exp(β3I(job = driver) + β4I(job = cond) + β5I(job = bank))

which is dependent on the type of job (unless β3 = β4 = β5).
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How to make R produce stratified effects I

Instead of just one baseline rate, you need three baseline rates, λ (one for
each job level). For each job level, you need a IRRs for the energy effect, θ.

R code and output
> tidy(glm(chd ~ job + hieng:job + offset(log(y)), data=diet, family=poisson),

conf.int=TRUE, exponentiate=TRUE)
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0.0145 0.354 -12.0 4.45e-33 0.00661 0.0269
2 jobconductor 1.14 0.500 0.257 7.98e- 1 0.418 3.09
3 jobbank 0.813 0.456 -0.452 6.51e- 1 0.337 2.08
4 jobdriver:hienghigh 0.410 0.612 -1.45 1.46e- 1 0.109 1.30
5 jobconductor:hienghigh 0.655 0.540 -0.783 4.34e- 1 0.216 1.88
6 jobbank:hienghigh 0.518 0.456 -1.44 1.49e- 1 0.203 1.25

Note that this is the same model; there are still 6 parameters and the fitted
values are identical. It’s just that the 6 parameters in this model have a
different interpretation.
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Effects of exposure within each stratum of the modifier

If we insert the R output in our previous table, we get

job hieng=0 hieng=1
driv 1.0 0.41

cond 1.0 0.66

bank 1.0 0.52
The stratum-specific IRRs are similar, there is no evidence of interaction.
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Linear combinations of parameters I

As an alternative to reparameterising the interaction model we can use the
new biostat3::lincom() function to estimate the effect of exposure within
each level of the modifier together with confidence intervals. Here again is
the interaction model with the default parameterisation.

R code and output
> tidy(fit <- glm(chd ~ hieng*job + offset(log(y)), data=diet, family=poisson),

conf.int=TRUE, exponentiate=TRUE)
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0.0145 0.354 -12.0 4.45e-33 0.00661 0.0269
2 hienghigh 0.410 0.612 -1.45 1.46e- 1 0.109 1.30
3 jobconductor 1.14 0.500 0.257 7.98e- 1 0.418 3.09
4 jobbank 0.813 0.456 -0.452 6.51e- 1 0.337 2.08
5 hienghigh:jobconductor 1.60 0.816 0.573 5.67e- 1 0.325 8.42
6 hienghigh:jobbank 1.26 0.764 0.305 7.61e- 1 0.288 6.06
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Linear combinations of parameters II

The effect of hieng for drivers is 0.41. We now estimate the effect of hieng
for the other two categories of job.

R code and output
> lincom(fit, c("hienghigh+hienghigh:jobconductor",

"hienghigh+hienghigh:jobbank"),
eform=TRUE)

Estimate 2.5 % 97.5 % Chisq Pr(>Chisq)
hienghigh+hienghigh:jobconductor 0.6550924 0.2273009 1.888008 0.61341 0.4335067
hienghigh+hienghigh:jobbank 0.5177431 0.211639 1.266581 2.079971 0.149243

The calculation 0.410 × 1.596 = 0.655 isn’t difficult but calculating the
standard error and CI is non-trivial (a combination of variances and
covariances).
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Time varying rates

So far, we have modelled the overall rate, i.e. a constant rate throughout the
follow-up.
We have modelled how this overall rate could vary according to other
variables using main effects models and interaction models.
Now, we will look at how to model and adjust for time when it confounds the
effect of interest.
The elegant way we can model time is one of the beauties of survival analysis.
We will look at time as a confounder of the rates and time as an
effect-modifier of other variables (later on).
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For which calendar period is mortality lowest? I
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For which calendar period is mortality lowest? II

R code and output
> survRate(Surv((exit - dx)/365.24/1000, status=="Dead: cancer") ~ year8594,

data=colon,
subset=stage=="Localised")

tstop event rate lower upper
year8594=Diagnosed 75-84 20.33538 905 44.50372 41.65109 47.50027
year8594=Diagnosed 85-94 15.27233 829 54.28118 50.64854 58.10556

The graphs suggest that patients diagnosed in the recent period have lower
mortality (better survival) but the estimated rates suggest otherwise.
The end of follow-up is 1995. Those diagnosed 1975-84 are followed for up to
20 years, whereas those diagnosed 1985-94 are followed for at most 10 years.
Those diagnosed 1985-94 have shorter follow-up.
Since the effect is highest in the early years of follow-up, the rates are
confounded by follow-up time.
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Time as a confounder I

When the rate changes with time then time may confound the effect of
exposure.
We will, for the moment, assume that the rates are constant within broad
time bands but can change from band to band.
This approach (categorising a metric variable and assuming the effect is
constant within each category) is standard in epidemiology.
We often categorise metric variables — the only difference here is that the
variable is ‘time’.
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Time as a confounder II

Consider a group of subjects with rates λ1 during band 1 (0-5 years), λ2
during band 2 (5-10 years), etc.

0 5 10 15
Time (years)

5 5 2

5 4

3

λ1 λ2 λ3

t
t

Subject 1

Subject 2

Subject 3

What are the estimated failure rates, λ1, λ2, λ3, for each of the bands?
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Splitting the records by follow-up time

A convenient way to fit these models using a computer is to replace the single
record for this subject by three new records, one for each band of observation.
The new subject–band records can be treated as independent records.

subject timeband follow-up failure
1 0-5 3 1
2 0-5 5 0
2 5-10 4 0
3 0-5 5 0
3 5-10 5 0
3 10-15 2 1

The rate for timeband 0-5 is then 1/(3+5+5), and so on for other time
bands.
This method can be used whether rates are varying simply as a function of
time or in response to some time–varying exposure.
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Splitting on ‘time in study’ (time since entry) I

It is good to check the data before splitting!

R code and output
> diet <- transform(diet, surv=Surv((dox-doe)/365.24, chd))
> subset(diet, id==34)

id chd y hieng energy job month height weight doe
138 34 1 7.709788 low 2561.83 driver 4 177.8 66.4524 1959-04-16

dox dob yoe yox yob surv
138 1966-12-31 1899-06-11 1959.287 1966.997 1899.441 7.709999
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Splitting on ‘time in study’ (time since entry) II

Split the data using the survival::survSplit function:

R code and output
> diet2 <- survSplit(Surv((dox-doe)/365.24, chd) ~ ., diet,

cut=seq(2,20,by=2),
episode="timeband")

> subset(diet2, id==34, select=c(id, tstart, tstop, chd, timeband))

id tstart tstop chd timeband
966 34 0 2.000000 0 1
967 34 2 4.000000 0 2
968 34 4 6.000000 0 3
969 34 6 7.709999 1 4

Person ID=34 was followed up for 7.71 years, and when we split the record
we got four rows of data, one for each time band 0–2, 2–4, 4–6 and 6–8
years where this person contributes risk time.

Clements et al Biostatistics III, Day 2 4–13 November, 2024 74 / 90



Rates for different time bands I

R code and output
> survRate(Surv(tstart,tstop,chd)~timeband, data=diet2)

timeband tstop event rate lower upper
timeband=1 1 665.7757091 6 0.009012044 3.307261e-03 0.019615426
timeband=2 2 649.9296901 3 0.004615884 9.519062e-04 0.013489572
timeband=3 3 618.7236885 11 0.017778534 8.874980e-03 0.031810708
timeband=4 4 594.7178841 8 0.013451756 5.807514e-03 0.026505322
timeband=5 5 566.9969335 1 0.001763678 4.465246e-05 0.009826585
timeband=6 6 491.9313328 8 0.016262432 7.020964e-03 0.032043475
timeband=7 7 414.8095499 2 0.004821490 5.839048e-04 0.017416879
timeband=8 8 361.9300186 5 0.013814825 4.485636e-03 0.032239194
timeband=9 9 177.8258679 2 0.011246958 1.362059e-03 0.040627878
timeband=10 10 60.9876246 0 0.000000000 0.000000e+00 0.060485705
timeband=11 11 0.1664659 0 0.000000000 0.000000e+00 22.159972563
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Rates for different time bands II
Poisson regression can also be performed using the glm function.

R code and output
> summary(fit <- glm(chd~hieng+offset(log(tstop - tstart)),

data=diet2, family=poisson))

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.2980 0.1890 -22.743 <2e-16 ***
hienghigh -0.6532 0.3021 -2.162 0.0306 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> tidy(fit, conf.int=TRUE, exponentiate=TRUE)
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0.0136 0.189 -22.7 1.69e-114 0.00916 0.0193
2 hienghigh 0.520 0.302 -2.16 3.06e- 2 0.283 0.933
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Rates for different time bands III

The effect of hieng controlled for timeband is found with:
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Rates for different time bands IV
R code and output
> fit <- glm(chd~hieng+offset(log(tstop - tstart))+

factor(timeband),
data=diet2, family=poisson)

> ## tidy(fit, conf.int=TRUE, exponentiate=TRUE) # fails:(
> biostat3::eform(fit)

exp(beta) 2.5 % 97.5 %
(Intercept) 1.220474e-02 0.005313288 0.02803458
hienghigh 5.192323e-01 0.287195398 0.93874145
factor(timeband)2 5.135333e-01 0.128433239 2.05333504
factor(timeband)3 1.994008e+00 0.737406016 5.39196399
factor(timeband)4 1.509798e+00 0.523838090 4.35151497
factor(timeband)5 1.977773e-01 0.023810314 1.64281217
factor(timeband)6 1.808344e+00 0.627449679 5.21174345
factor(timeband)7 5.338991e-01 0.107759513 2.64522605
factor(timeband)8 1.535991e+00 0.468770132 5.03288826
factor(timeband)9 1.261453e+00 0.254598705 6.25008866
factor(timeband)10 1.102078e-06 0.000000000 Inf
factor(timeband)11 3.508572e-05 0.000000000 Inf
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Rates for different time bands V

We could also use either timeband or the interval mid-point as a linear effect:

R code and output
> diet3 <- transform(diet2,tmid=(tstop+tstart)/2)
> broom::tidy(glm(chd~hieng+offset(log(tstop - tstart))+tmid,

data=diet3, family=poisson),
conf.int=TRUE, exponentiate=TRUE)

term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0.0155 0.293 -14.2 4.78e-46 0.00845 0.0267
2 hienghigh 0.521 0.302 -2.16 3.07e- 2 0.283 0.933
3 tmid 0.983 0.0308 -0.560 5.75e- 1 0.924 1.04

Moreover, we could also model for the time mid-points using splines or some
other smooth function (we will discuss splines further on day 4).
There is no reason to believe that time-on-study would be a confounder for
these data. This would, however, be of interest in the cancer examples.
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Splitting the follow–up on the age scale I

Attained age is a possible confounder for the diet study, young and old people
may differ in both energy intake and risk for CHD. Attained age is more
interesting as a potential confounder than age at entry.

R code and output
> diet2 <- survSplit(Surv((doe-dob)/365.24, (dox-dob)/365.24, chd) ~ .,

data=diet,
cut=seq(40,70,by=10),
episode="ageband")

> subset(diet2, id==34, select=c(id, tstart, tstop, chd, ageband))

id tstart tstop chd ageband
333 34 59.84558 60.00000 0 3
334 34 60.00000 67.55558 1 4
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Splitting the follow–up on the age scale II

We see that, as expected, the CHD incidence rate depends on attained age.

R code and output
> survRate(Surv(tstart,tstop,chd)~ageband, data=diet2)

ageband tstop event rate lower upper
ageband=1 1 9.630271e+01 0 0.000000000 0.000000000 0.03830505
ageband=2 2 9.068131e+02 6 0.006616579 0.002428168 0.01440151
ageband=3 3 2.106989e+03 18 0.008542995 0.005063120 0.01350162
ageband=4 4 1.493650e+03 22 0.014729023 0.009230600 0.02229992
ageband=5 5 3.997372e-02 0 0.000000000 0.000000000 92.28262547
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The effect of hieng controlled for attained age I

R code and output
> diet2 <- survSplit(Surv((doe-dob)/365.24, (dox-dob)/365.24, chd) ~ .,

data=diet,
cut=seq(50,60,by=10),
episode="ageband")

> fit <- glm(chd~hieng+offset(log(tstop - tstart))+
factor(ageband),

data=diet2, family=poisson)
> tidy(fit, conf.int=TRUE, exponentiate=TRUE)

term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0.00840 0.432 -11.1 1.86e-28 0.00321 0.0179
2 hienghigh 0.536 0.303 -2.06 3.94e- 2 0.291 0.962
3 factor(ageband)2 1.35 0.472 0.641 5.22e- 1 0.567 3.74
4 factor(ageband)3 2.33 0.461 1.83 6.70e- 2 1.00 6.33

Is there evidence that the effect of hieng is confounded by attained age?

Minor indication of confounding, the crude hieng estimate is 0.52, as we saw
in previous slides.
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Collapsing person-time data I

Fine time-splitting on one or more time scales can make the dataset very
large.
Usefully, for time segments with the same covariates, we can also collapse,
where we sum the events and sum the person-time

R code and output
> diet3 <- group_by(diet2, ageband, hieng) |>

summarise(chd=sum(chd), pt=sum(tstop-tstart)) # n=6 observations
> fit <- glm(chd~hieng+offset(log(pt))+

factor(ageband),
data=diet3, family=poisson)

> tidy(fit, conf.int=TRUE, exponentiate=TRUE) # essentially the same fit
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0.00840 0.432 -11.1 1.88e-28 0.00321 0.0179
2 hienghigh 0.536 0.303 -2.06 3.95e- 2 0.291 0.962
3 factor(ageband)2 1.35 0.472 0.641 5.22e- 1 0.567 3.74
4 factor(ageband)3 2.33 0.461 1.83 6.70e- 2 1.00 6.33
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Splitting by multiple time scales I

Usefully, we can also split by multiple time scales.

R code
## first, split by attained age
diet2 <- survSplit(Surv((doe-dob)/365.24, (dox-dob)/365.24, chd) ~ .,

data=transform(diet,yob=year(dob)),
cut=seq(50,60,by=10), # 40-, 50-, 60-
episode="ageband")

## then split by attained year
diet3 <- survSplit(Surv(yob+tstart, yob+tstop, chd) ~ .,

data=diet2,
cut=seq(1960,1980,by=10), # 1950-, 1960, 1970-
episode="yearband")

## then fit the regression model
fit <- glm(chd~hieng+offset(log(tstop - tstart))+

factor(ageband)+factor(yearband),
data=diet3, family=poisson)

summary(fit)
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Splitting by multiple time scales II

R output
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.9046 0.5628 -6.937 4e-12 ***
hienghigh -0.6030 0.3033 -1.988 0.0468 *
factor(ageband)2 0.3958 0.4775 0.829 0.4072
factor(ageband)3 1.0530 0.5003 2.105 0.0353 *
factor(yearband)2 -1.0708 0.5029 -2.129 0.0332 *
factor(yearband)3 -1.1298 0.5509 -2.051 0.0403 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Statistical models I

Multiple regression models are important in that they allow simultaneous
estimation and testing of the effect of many prognostic factors on survival.
The aim of statistical modelling is to derive a mathematical representation of
the relationship between an observed response variable and a number of
explanatory variables, together with a measure of the uncertainty of any such
relationship.
The uses of a statistical model can be classified into the following three
areas:

1. Descriptive: To describe any structure in the data and quantify the effect of
explanatory variables, and to study the pattern of any such associations;

2. Hypothesis testing: To statistically test whether an observed response variable
is associated with one or more explanatory variables; and

3. Prediction: For example, predicting excess mortality for a future time period,
or predicting the way in which the outcome may change if certain explanatory
variables changed in value.

Note that a statistical model is never true, but may be useful.
When making inference based on the model we assume that the model is true.
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Statistical models II

If the model is badly misspecified then inference will be erroneous.
It is therefore important to consider the validity of any assumptions (e.g.
proportional hazards) underlying the model and to check for evidence of
lack-of-fit.

Clements et al Biostatistics III, Day 2 4–13 November, 2024 87 / 90



Summary of Day 2

A rate is defined as events divided by total time-at-risk, where time at risk is
usually measured in person-years, person-months etc.
The rates can vary across various time scales, e.g. time since entry, attained
age, calendar period.
Rates can be modelled using Poisson regression, which estimates the baseline
hazard rate and the incidence rate ratios (IRR) for different exposure levels.
Interactions can be re-parameterised in various ways to show the different
aspects of effect modification.
The estimates of rates and IRRs can be confounded by time.
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Exercises for Wednesday afternoon

6. Diet data: tabulating incidence rates and modelling with Poisson regression.
[working through what was presented in the lectures].

7. Localised melanoma: model cause-specific mortality with Poisson regression.
[this is a key exercise, tomorrow we will fit a Cox model to the same data and
compare the results]

8. Diet data: Using Poisson regression to study the effect of energy intake
adjusting for confounders. [Something for you to do if you’ve finished the
other two]
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