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Friendly faces

Course director: Mark Clements (mark.clements@ki.se)
Course administrator: Gunilla Nilsson Roos (gunilla.nilsson.roos@ki.se)
Teachers: Alexander Ploner, Eva Meglic, Fabrizio di Mari, Mark Clements,
Yunyang Deng.
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Overview of the course I

Central concepts in survival analysis: censoring, truncation, survival function,
hazard function.
Estimating survival using the Kaplan-Meier method.
Estimating rates and modelling them using Poisson regression.
Cox proportional hazards model.
The proportional hazards assumption.
Modelling non-proportional hazards.
Comparison of the Cox and Poisson regression models.
Parametric survival models.
Risk set sampling (e.g. nested case-control studies)
Non-collapsibility of the hazard ratio
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Teaching format

Generally lecture Q&A and review in the morning followed by computing labs
in the afternoon.
We have constructed exercises and provided solutions to most exercises. We
will suggest appropriate exercises for each afternoon, but you are welcome to
diverge from those suggestions.
Course participants have a wide range of backgrounds and diverse interests.
It is hoped that the lab sessions will provide time for you to study or ask
questions about topics of special interest.
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Textbook I

We have not assigned any compulsory texts since experience has shown that
course participants have varying preferences.
We will provide extensive course notes. We suggest students interested in
additional reading identify a textbook at a technical level suitable for them.
Many books on medical statistics contain a chapter on survival analysis.
Very few books are targeted at epidemiologists.
The definitive text for epidemiologists is ‘Statistical Methods in Cancer
Research: Volume II - The Design and Analysis of Cohort Studies’ by Breslow
and Day [3] although it is rather advanced.
[http://publications.iarc.fr/_publications/media/download/
3494/fb469ed43c52f0c738915cca6a0f31544b9ed7b6.pdf]
For R, KI has access to a chapter on survival from “The R Book”
http://onlinelibrary.wiley.com.proxy.kib.ki.se/doi/10.1002/
9781118448908.ch27/pdf.

Clements et al Biostatistics III, Day 1 4–13 November, 2024 5 / 89

http://publications.iarc.fr/_publications/media/download/3494/fb469ed43c52f0c738915cca6a0f31544b9ed7b6.pdf
http://publications.iarc.fr/_publications/media/download/3494/fb469ed43c52f0c738915cca6a0f31544b9ed7b6.pdf
http://onlinelibrary.wiley.com.proxy.kib.ki.se/doi/10.1002/9781118448908.ch27/pdf
http://onlinelibrary.wiley.com.proxy.kib.ki.se/doi/10.1002/9781118448908.ch27/pdf


Computing

We will be using R in the lecture material and the labs (or see the Exercises
link on the home page)
The lab exercises can now be run on the browser:)
http://www.biostat3.net/download/index.php?dir=R/.
If running R on your computer, the biostat3 package, including the labs, is
available from CRAN. The package can be installed by
> install.packages("biostat3")

This should only be needed once per course.
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Key concepts for the course

Special methods (i.e. survival analysis) are required when the outcome of
interest has a time dimension.
The outcome can be presented as a survival proportion or an event rate. The
two measures are mathematically related.
Epidemiological cohort studies can (and should) be analysed in the framework
of survival analysis. ‘Time’ may be a confounder or an effect modifier.
Cox regression and Poisson regression are very similar.
Reinforce key concepts in statistical modelling of epidemiological data

Studying confounding and effect modification in a modelling framework
Reparameterising a statistical model to estimate interaction effects1

1In this course, we tend to use “effect modification” and “interaction” synonymously,
although some authors defined them distinctly [7].
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Learning outcomes I

For the course plan, see
http://kiwas.ki.se/katalog/katalog/kurs/5412 for course 2212. The
learning outcomes are listed in the course plan and reproduced below.

After successfully completing this course you should be able to:
1 Propose a suitable statistical model for assessing a specific research

hypothesis using data from a cohort study, fit the model using standard
statistical software, evaluate the fit of the model and interpret the results.

2 Explain the similarities and differences between Cox regression and Poisson
regression.

3 Understand the concept of timescales in statistical models for time-to-event
data, be able to control for different timescales using standard statistical
software and argue for an appropriate timescale for a given research
hypothesis.

4 Understand the concept of confounding in epidemiological studies and be
able to control/adjust for it using statistical models.
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Learning outcomes II

5 Apply and interpret appropriate statistical models for studying effect
modification and be able to reparameterise a statistical model to estimate
appropriate contrasts.

6 Critically evaluate the methodological aspects (design and analysis) of a
scientific article reporting a cohort study.
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Take-home examination I

The course grade is based solely on a take-home written examination. The
content of the exam will be similar to the previous take-home exams (although
you will not need to write code for this exam). The exam requires you to
understand the concepts of survival analysis and interpret output from standard
statistical software. Instructions:

The examination is individual-based: you are not allowed to cooperate
with anyone, although you are encouraged to consult the available literature.
The teachers will use Urkund to check for plagiarism
(https://staff.ki.se/plagiarism-checks-in-doctoral-education)
The examination will be made available at 12:00 on Wednesday 13 November
2024 and the examination is due by 17:00 on Wednesday 20 November 2024.
The examination will be graded and results will be returned to you by 29
November 2024.
Students who do not obtain a passing grade in the first examination will be
offered a second examination within 2 months of the final day of the course.
Do not write answers by hand: please use Word, LATEX or a similar format for
your examination report.
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Take-home examination II

Motivate all answers and show all calculations in your examination report,
but write as brief an answer as possible without loss of clarity. Define any
notation that you use for equations. The examination report should be
written in English.
You are expected to interpret R computer code and output.
Email the examination report containing the answers as a pdf file to
gunilla.nilsson.roos@ki.se. Write your name in the email, but do
not write your name in the document containing the answers.
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Notation

Expression Interpretation
exp(x) Natural exponential of x
log(x) Natural logarithm of x∑n

i=1 exp(βxi) Sum of exp(βxi) for i varying from 1 to
n; exp(βx1) + exp(βx2) + . . . + exp(βxn)∏n

i=1(1 − pi) Product of (1 − pi) for i varying from 1
to n; (1 − p1) × (1 − p2) × . . . × (1 − pn)∫ t

t0
f (u)du Area under the function f where the

value u varies between t0 and t

lim∆t→0
Pr(t ≤ T < t + ∆t)

∆t As ∆t gets closer to 0, the probability of
T being between t and t + ∆t, divided
by ∆t
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Properties of logs and exponentials

Expression Interpretation
exp(a + b) = exp(a) exp(b) exponential of a sum equals the product

of the exponentiated values
log(ab) = log(a) + log(b) log of a product equals the sum of the

log values
log(ab) = b log(a) log of ab equals b times log of a
log(exp(x)) = x log is the inverse of exp; and
exp(log(x)) = x exp is the inverse of log
1 − x ≈ exp(−x) this approximation holds when x is close

to zero

Clements et al Biostatistics III, Day 1 4–13 November, 2024 13 / 89



Definitions

Let T be a continuous random variable for the time to an event with time origin
t0 (e.g. t0 = 0 if study entry is from time 0). Then:

Name Symbol Definition

Probability density function f (t) lim∆t→0
Pr(t ≤ T < t + ∆t)

∆t
Cumulative distribution function F (t) Pr(T ≤ t)
Survival function S(t) Pr(T > t)

Properties for f (t):
Non-negative: 0 ≤ f (t) < ∞ (where ∞ is the symbol for infinity)
Area under f is one:2

∫ ∞
t0

f (t)dt = 1
Probability of an event between t and t + δ is approximately f (t)δ.

2For a proper distribution with no cure.
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Definitions

Properties for F (t):
Interpreted as the probability of having an event, or failure, by time t
Bounded between zero and one: 0 ≤ F (t) ≤ 1
Zero at t = t0: F (t0) = 0
One at t = ∞:3 F (∞) = 1
Area under f between t0 and t: F (t) =

∫ t
t0

f (u)du
Properties for S(t):

S(t) = 1 − F (t)
Interpreted as the probability of not having an event by time t
Bounded between zero and one: 0 ≤ S(t) ≤ 1
One at t = t0: S(t0) = 1
Zero at t = ∞:3 S(∞) = 0
Area under f (t) between t and ∞: S(t) =

∫ ∞
t f (u)du

3For a proper distribution, otherwise some individuals may never have the event and F (t) < 1
and S(t) > 0.
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Three functions to represent an exponential distribution
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Analysis of Time-to-Event Data (survival analysis)

Survival analysis concerns analysing the time to the occurence of an event,
e.g. time until a cancer patient dies.
Time-to-event analysis is also known as failure time analysis, lifetime data
analysis, event history analysis and survival analysis.
Time-to-event analysis is used for cohort studies and randomised controlled
trials (RCTs) for outcomes where study participants are followed from a
well-defined entry time to an endpoint.
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Formal requirements of time-to-event data

Three basic requirements define time-to-event measurements
1 precise definition of the start and end of follow-up time
2 unambiguous origin for the measurement of ‘time’; scale of time (e.g. time

since diagnosis, attained age)
3 precise definition of ‘response,’ or occurrence of the event of interest

We will discuss the concept of timescales and how to choose an appropriate
timescale later in the course.
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What can we estimate from time-to-event data? I

Survival probability, i.e. the proportion who have not experienced the event
at a given time point during follow-up
Median survival time, that is, the time when half of the individuals would
have had the event
Event rates (hazard rates, incidence rates), i.e. instantaneous risk that the
event will occur at a given time point
Hazard ratios, i.e. ratios of event rates between different groups (e.g.
exposed vs. unexposed) while adjusting for confounders
The focus of today’s lecture is on how to estimate the survival probability.
Later lectures will cover the other measures.
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What can we estimate from time-to-event data? II

In some studies, the event of interest (e.g. death) is bound to occur if we are
able to follow-up each individual for a sufficient length of time.
However, whether or not the event of interest is inevitable generally has no
consequence for the design, analysis, or interpretation of the study4.
In some studies, the time-to-event (or survival probability) is of primary
interest, whereas in many epidemiological cohort studies we are primarily
interested in comparing the event rates between the exposed and unexposed.
The basic statistical methodology is similar for randomised and observational
studies, although the observational studies may have a stronger need to
control for potential confounding.
The characteristic that complicates the use of standard statistical methods is
censoring — unobserved or interval values of the response measurement of
interest. Censoring leads to differences in follow-up time between individuals.

4For completeness, an exception is when we are interesting in estimating the proportion
“cured”.
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Why do we need survival analysis?

A 2-by-2 table ignores time (exposure vs. outcome).
If everyone has complete follow-up, then it is OK to ignore time.
For example, if we follow 35 persons for 5 years and count how many who die
during 5 years, then we can correctly estimate the risk of dying within 5 years.
However, if not all persons will be followed for 5 full years, due to migration,
death or other reasons, they are lost to follow-up. This means that we have
incomplete follow-up for some persons.
The deaths that we count during those 5 years will only be among those who
are still being followed. Out of the 35 we started with, we will miss some
deaths since they were unobserved (happened after we lost them from
follow-up).
In a situation with incomplete follow-up we must take time-at-risk (follow-up
time) into account in the analysis, hence we use survival analysis.
Note: In a situation with complete follow-up we can choose to either ignore
time (by using a logistic regression type analysis) or by including it (by using
a survival analysis).
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Right censoring and follow-up I

Right censoring refers to the situation where the individual can no longer be
followed up and the event of interest has not occurred.
In studying the survival of cancer patients, for example, patients enter the
study at the time of diagnosis (or the time of treatment in randomised trials)
and are followed up until the event of interest is observed. Right censoring
may occur in one of the following forms:

Termination of the study before the event occurs (administrative censoring);
Death due to a cause not considered to be the event of interest (in
cause-specific survival analyses); and
Loss to follow-up, for example, if the patient emigrates.

We say that the survival time is ‘right censored’.
With right censoring, we know that the event has not occurred during
follow-up, but we are unable to follow-up the patient further. We know only
that the true survival time of the patient is greater than a given value.
If we do not account for these differences (by using survival analysis) then
results may be biased.
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Graphical representation of censoring
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sex age stage mmdx yydx surv_mm surv_yy status subsite
1 Male 72 Localised 2 1989 2 0.01 Dead: other Descending and sigmoid
2 Female 82 Distant 12 1991 2 0.01 Dead: cancer Descending and sigmoid
3 Male 73 Distant 11 1993 3 0.01 Dead: cancer Descending and sigmoid
4 Male 63 Distant 6 1988 5 0.01 Dead: cancer Transverse
5 Male 67 Localised 5 1989 7 0.01 Dead: cancer Transverse
6 Male 74 Regional 7 1992 8 0.01 Dead: cancer Coecum and ascending
7 Female 56 Distant 1 1986 9 0.01 Dead: cancer Transverse
8 Female 52 Distant 5 1986 11 0.01 Dead: cancer Coecum and ascending
9 Male 64 Localised 11 1994 13 1.00 Alive Descending and sigmoid
10 Female 70 Localised 10 1994 14 1.00 Alive Descending and sigmoid
11 Female 83 Localised 7 1990 19 1.00 Dead: other Descending and sigmoid
12 Male 64 Distant 8 1989 22 1.00 Dead: cancer Descending and sigmoid
13 Female 79 Localised 11 1993 25 2.00 Alive Descending and sigmoid
14 Female 70 Distant 6 1988 27 2.00 Dead: cancer Coecum and ascending
15 Male 70 Regional 9 1993 27 2.00 Alive Coecum and ascending
16 Female 68 Distant 9 1991 28 2.00 Dead: cancer Descending and sigmoid
17 Male 58 Localised 11 1990 32 2.00 Dead: cancer Descending and sigmoid
18 Male 54 Distant 4 1990 32 2.00 Dead: cancer Coecum and ascending
19 Female 86 Localised 4 1993 32 2.00 Alive Descending and sigmoid
20 Male 31 Localised 1 1990 33 2.00 Dead: cancer Coecum and ascending
21 Female 75 Localised 1 1993 35 2.00 Alive Descending and sigmoid
22 Female 85 Localised 11 1992 37 3.00 Alive Coecum and ascending
23 Female 68 Distant 7 1986 43 3.00 Dead: cancer Descending and sigmoid
24 Male 54 Regional 6 1985 46 3.00 Dead: cancer Transverse
25 Male 80 Localised 6 1991 54 4.00 Alive Coecum and ascending
26 Female 52 Localised 7 1989 77 6.00 Alive Transverse
27 Male 52 Localised 6 1989 78 6.00 Alive Descending and sigmoid
28 Male 65 Localised 1 1989 83 6.00 Alive Descending and sigmoid
29 Male 60 Localised 11 1988 85 7.00 Alive Transverse
30 Female 71 Localised 11 1987 97 8.00 Alive Descending and sigmoid
31 Male 58 Localised 8 1987 100 8.00 Alive Descending and sigmoid
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yydx status
1 1989 Dead: other
2 1991 Dead: cancer
3 1993 Dead: cancer
4 1988 Dead: cancer
5 1989 Dead: cancer
6 1992 Dead: cancer
7 1986 Dead: cancer
8 1986 Dead: cancer
9 1994 Alive
10 1994 Alive
11 1990 Dead: other
12 1989 Dead: cancer
13 1993 Alive
14 1988 Dead: cancer
15 1993 Alive
16 1991 Dead: cancer
17 1990 Dead: cancer
18 1990 Dead: cancer
19 1993 Alive
20 1990 Dead: cancer
21 1993 Alive
22 1992 Alive
23 1986 Dead: cancer
24 1985 Dead: cancer
25 1991 Alive
26 1989 Alive
27 1989 Alive
28 1989 Alive
29 1988 Alive
30 1987 Alive
31 1987 Alive
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Choice of outcome measure I

In Biostatistics I and II we covered statistical methods for comparing means
and proportions (e.g. logistic regression). What happens if we apply these
methods now?
Let’s assume a new treatment was introduced in late 1992 and we are
interested in studying whether patient survival has improved for patients
diagnosed 1993–94 compared to those diagnosed earlier.
Let’s compare the proportion of patients who die between two diagnosis
periods.
The patients were followed until end of 1995.
This means that patients who were diagnosed 1993-1994 only had follow-up
for at most 36 months (3 years) due to ‘administrative’ right censoring.
Whereas, patients diagnosed 1985-1992 had follow-up for at most 11 years.
Note that most patients do not have complete follow-up through to 11 years.
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Choice of outcome measure II
R code and output
## Reminder: anything after a # is a comment
## In the following, code starts with ">"
> library(biostat3) # load biostat3 library to use colon_sample data-frame
> colon2 = transform(colon_sample,

dx93=(yydx>=1993), # binary variable
dead=(status != "Alive")) # binary variable

> m = stats::xtabs(~dx93+dead, data=colon2) # cross-tabulation
> m
> stats::chisq.test(m)

dead
dx93 FALSE TRUE

FALSE 10 18
TRUE 6 1

Pearson’s Chi-squared test with Yates’ continuity correction

data: m
X-squared = 3.8065, df = 1, p-value = 0.05105

Warning message:
In chisq.test(m) : Chi-squared approximation may be incorrect
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Choice of outcome measure III

As the expected cell counts are less than five in the bottom row, we should use
Fisher’s exact test.

R code and output
> stats::fisher.test(m)

Fisher’s Exact Test for Count Data

data: m
p-value = 0.03182
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.001915923 0.990524462

sample estimates:
odds ratio
0.0990587
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Choice of outcome measure IV
We see that only 1 of the 7 (14%) patients diagnosed in the recent period
died compared to 18 of 28 (64%) in the early period and this difference is
statistically significant.
It is not surprising that the proportion of deaths was lower among patients
diagnosed more recently since these patients had a shorter follow-up time:
they did not have the same opportunity to die.
Let’s instead compare the average ‘survival time’ (the lengths of the lines)
between the two groups while ignoring whether or not the patient died.

R code and output
> stats::t.test(surv_mm ~ dx93, data=colon2)

data: surv_mm by dx93
t = 3.2604, df = 31.089, p-value = 0.002698
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
10.15265 44.06164

sample estimates:
mean in group FALSE mean in group TRUE

48.39286 21.28571
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Choice of outcome measure V
Patients diagnosed in 1985-92 ‘survived’ on average for 48 months compared
to 21 months for patients diagnosed 1993-94.
Restricting this analysis to patients who died (i.e. mean survival time among
those who died) is not appropriate either. By definition, the maximum
survival time for patients diagnosed 1993-1994 is 36 months.

R code and output
> t.test(surv_mm ~ dx93, data=colon2, subset=dead)
Error in t.test.default(x = c(2L, 2L, 5L, 7L, 8L, 9L, 11L, 19L, 22L, 27L, :

not enough ’y’ observations
> xtabs(~dx93, data=colon2, subset=dead)
dx93
FALSE TRUE

18 1
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Choice of outcome measure VI

What we would like is some measure of the risk of death adjusted for the fact
that individuals were at risk for different lengths of time.
Methods used for making inference about proportions (e.g. logistic
regression) are only appropriate when all individuals have the same time at
risk. This is typically not the case when we have survival data.
There may, however, be situations where everyone has the same potential
follow-up.
That is, when we have a binary outcome and all individuals are at risk for the
same length of time the proportion is an appropriate outcome measure.

proportion who experience the event = number of events
number of individuals

Every individual contributes the same amount to the denominator.
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Choice of outcome measure VII

If, however, individuals are at risk for differing lengths of time we use
‘person-time’ as the denominator and estimate the event rate (a mortality
rate in this example).

event rate = number of events
person-time at risk

We can calculate the rate in R using dplyr:

R code and output
> library(dplyr)
> group_by(colon2,dx93) |>

summarise(events=sum(dead), py=sum(surv_mm/12)) |>
mutate(rate = events/py)

# A tibble: 2 x 4
dx93 events py rate
<lgl> <int> <dbl> <dbl>

1 FALSE 18 113. 0.159
2 TRUE 1 12.4 0.0805
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Choice of outcome measure VIII

The main message is that, in survival analysis, the outcome has at least two
dimensions – the event indicator and the time at risk5.
The event rate is not the only appropriate outcome measure; it is also
possible to estimate the proportion surviving (or proportion dying) while
controlling for the fact that individuals are at risk for different lengths of
time. This, in fact, will be the focus for today’s lectures.

5The time origin is a third dimension – which is particularly important if there is confounding
by time.
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Sample data sets

The following data sets will be used during the course:
colon Colon carcinoma diagnosed during 1975–1994 with follow-up

to 31 December 1995.
melanoma Skin melanoma diagnosed during 1975–1994 with follow-up to

31 December 1995.
colon_sample A random sample of 35 patients from the colon data.

diet Data from a pilot study evaluating the use of a weighed diet
over 7 days in epidemiological studies. The primary hypothesis
is the relationship between dietary energy intake and incidence
of coronary heart disease (CHD).

The diet data are analysed extensively by Clayton and Hills [4].
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Brief review of R data types

Type Name Values Comment
num numeric 1.0, -2.0e-5 Double precision. Assumes 1

is numeric
int integer 1L, 2L
char character "A", "1234"
Factor factor "A", "B" Categories with ordered levels
Date Date as.Date("1969-08-01") Difference of dates is a

difftime – convert using
as.numeric.
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Variables in the colon carcinoma data set

R code and output
> str(colon)

’data.frame’: 15564 obs. of 16 variables:
$ sex : Factor w/ 2 levels "Male","Female": 2 2 1 1 1 2 2 2 1 1 ...
$ age : int 77 78 78 76 80 75 81 77 77 78 ...
$ stage : Factor w/ 4 levels "Unknown","Localised",..: 4 2 4 4 2 2 4 3 2 1 ...
$ yydx : int 1977 1978 1978 1976 1980 1975 1981 1977 1977 1978 ...
$ surv_mm : num 16.5 82.5 1.5 1.5 8.5 23.5 2.5 9.5 85.5 0.5 ...
$ surv_yy : num 1.5 6.5 0.5 0.5 0.5 1.5 0.5 0.5 7.5 0.5 ...
$ status : Factor w/ 4 levels "Alive","Dead: cancer",..: 2 3 2 2 2 2 2 3 3 2 ...
$ subsite : Factor w/ 4 levels "Coecum and ascending",..: 2 1 3 3 3 1 3 2 1 2 ...
$ year8594: Factor w/ 2 levels "Diagnosed 75-84",..: 1 1 1 1 1 1 1 1 1 1 ...
$ agegrp : Factor w/ 4 levels "0-44","45-59",..: 4 4 4 4 4 4 4 4 4 4 ...
$ dx : Date, format: "1977-03-04" "1978-07-26" "1978-10-10" ...
$ exit : Date, format: "1978-07-20" "1985-06-11" "1978-11-25" ...
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ ydx : num 1977 1979 1979 1977 1981 ...
$ yexit : num 1979 1985 1979 1977 1982 ...
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Variables in the skin melanoma data set

R code and output
> str(melanoma)

’data.frame’: 7775 obs. of 16 variables:
$ sex : Factor w/ 2 levels "Male","Female": 2 2 2 2 2 2 2 2 2 2 ...
$ age : int 81 75 78 75 81 75 75 80 76 79 ...
$ stage : Factor w/ 4 levels "Unknown","Localised",..: 2 2 2 1 1 2 2 2 1 4 ...
$ yydx : int 1981 1975 1978 1975 1981 1975 1975 1980 1977 1980 ...
$ surv_mm : num 26.5 55.5 177.5 29.5 57.5 ...
$ surv_yy : num 2.5 4.5 14.5 2.5 4.5 1.5 5.5 4.5 18.5 1.5 ...
$ status : Factor w/ 4 levels "Alive","Dead: cancer",..: 3 3 3 2 3 2 3 3 1 2 ...
$ subsite : Factor w/ 4 levels "Head and Neck",..: 1 1 3 4 1 2 1 1 3 4 ...
$ year8594: Factor w/ 2 levels "Diagnosed 75-84",..: 1 1 1 1 1 1 1 1 1 1 ...
$ dx : Date, format: "1981-02-02" "1975-09-21" "1978-02-21" ...
$ exit : Date, format: "1983-04-20" "1980-05-07" "1992-12-07" ...
$ agegrp : Factor w/ 4 levels "0-44","45-59",..: 4 4 4 4 4 4 4 4 4 4 ...
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ ydx : num 1981 1976 1978 1976 1982 ...
$ yexit : num 1983 1980 1993 1978 1986 ...
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Variables in the diet data set

R code and output
> str(diet)

’data.frame’: 337 obs. of 15 variables:
$ id : int 127 200 198 222 305 173 120 206 81 333 ...
$ chd : int 0 0 0 0 1 0 0 0 0 0 ...
$ y : num 16.79 19.96 19.96 15.39 1.49 ...
$ hieng : Factor w/ 2 levels "low","high": 1 1 1 1 1 1 1 1 1 1 ...
$ energy : num 2023 2449 2281 2468 2363 ...
$ job : Factor w/ 3 levels "driver","conductor",..: 2 3 3 3 3 2 2 3 1 3 ...
$ month : int 2 12 12 2 1 12 7 1 12 6 ...
$ height : num 174 178 NA 159 NA ...
$ weight : num 61.5 73.5 NA 58.2 NA ...
$ doe : Date, format: "1960-02-16" "1956-12-16" "1956-12-16" ...
$ dox : Date, format: "1976-12-01" "1976-12-01" "1976-12-01" ...
$ dob : Date, format: "1910-09-27" "1909-06-18" "1910-06-30" ...
$ yoe : num 1960 1957 1957 1957 1960 ...
$ yox : num 1977 1977 1977 1973 1962 ...
$ yob : num 1911 1909 1910 1903 1913 ...
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Colon carcinoma 1985–94

Table: Codes for vital status with corresponding frequency counts 1985–94

Code and description Male Female
0 Alive 1476 2081
1 Dead: due to colon carcinoma 1806 2618
2 Dead: other cause of death 519 586
4 Lost to follow-up 1 0

Total 3802 5285

Note that the sample data sets also include patients diagnosed 1975–1984.
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Skin melanoma 1985–94 I

Table: Codes for vital status with corresponding frequency counts 1985–94

Code and description Male Female
0 Alive 1554 1786
1 Dead: melanoma was the cause 543 376
2 Dead: other cause of death 238 247
4 Lost to follow-up 0 0

Total 2335 2409

Note that the sample data sets also include patients diagnosed 1975–1984.
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Examples of events and right censoring

Events Right censoring
Death Emigration

End-of-study (e.g. 2006-12-31)

Cancer death Death due to other causes than cancer
Emigration

End-of-study (e.g. 2006-12-31)

Breast cancer incidence Death
Emigration

End-of-study (e.g. 2006-12-31)
Mastectomy
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The survival function I
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Figure: Estimates of S(t) for 35 patients diagnosed with colon carcinoma. All deaths are
considered events.
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The survival function II

Review:
S(t) is a nonincreasing (‘monotone decreasing’) function with a value 1 at
the time origin and a value 0 as t approaches infinity.
Survival is a proportion.
For example, the 5-year survival proportion for the data presented in Figure 1
is 45%.
Nonparametric methods for estimating S(t) (described later) generally
involve estimating the survival proportion at discrete values of t and then
interpolating these to obtain an estimate of S(t).
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Interpreting S(t) and comparing estimates of S(t) between
groups I
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Interpreting S(t) and comparing estimates of S(t) between
groups II

Individuals in group 1 experience slightly better survival compared to
individuals in group 2.
It is difficult to compare survival between groups simply by studying the plots.
The rate of decline of the survival function is a measure of the risk of
experiencing the event at time t (the instantaneous mortality rate at time t).
In survival analysis, this is called the hazard function, λ(t).
Patients in group 1 have better survival for the interval up to 850 days
following diagnosis but then have worse survival than group 2 after 850 days.
This is an example of non-proportional hazards.
The survival experience of a cohort can be expressed in terms of the survival
proportion or the hazard rate.
In epidemiological cohort studies where the incidence of a disease is the
outcome (rather than death), we often present the failure proportion, given
by F (t) = 1 − S(t), rather than S(t).
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Interpreting S(t) and comparing estimates of S(t) between
groups III

We can model the hazard function (or incidence rate) and estimate the
hazard ratio (or incidence rate ratio) for the exposed compared to the
unexposed.
The hazard ratio, rather than the survival function, may be of primary
interest.
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Definitions I

As defined earlier, we let T be a continuous random variable for the time to an
event with time origin t0 (e.g. t0 = 0 if study entry is from time 0), with
probability density function f (t) and survival function S(t). Then:

Name Symbol Definition

Hazard λ(t) lim∆t→0
Pr(t ≤ T < t + ∆t|T ≥ t)

∆t
Cumulative hazard Λ(t)

∫ t
t0

λ(u)du

Properties for λ(t):
Non-negative: 0 ≤ λ(t) < ∞
Probability of an event between t and t + ∆t conditional on survival to time
t is approximately λ(t)∆t.

Properties for Λ(t):
Non-negative: 0 ≤ Λ(t) < ∞
Λ(t0) = 0 and limt→∞ Λ(t) = ∞
Interpreted as the area under λ between t0 and t
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Mathematical relationships between these functions

Given the hazard or cumulative hazard, we can calculate survival:

S(t) = exp(−Λ(t))

= exp
(

−
∫ t

t0

λ(u)du
)

Given survival or the cumulative hazard, we can calculate the hazard:

λ(t) = −dS(t)
dt /S(t) (-slope/survival=rate of decline)

λ(t) = d
dt Λ(t) (derivative of cumulative hazard)

= − d
dt log(S(t)) (derivative of cumulative hazard)

λ(t) = f (t)
S(t) (density/survival)
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Estimating the survival function, S(t) I

Consider the 35 colon cancer patients introduced on slide 25.
We may be interested in estimating S(t) for death due to any cause.
An estimate of S(t) could be obtained by simply calculating the proportion of
individuals still alive at selected values of t, such as completed years.
We had 35 patients alive at start. Eight of the 35 patients died during the
first year of follow-up so the estimate for S(1) is
Ŝ(1) = (35 − 8)/35 = 27/35 = 0.771.
We encounter problems when attempting to estimate S(2). Ten patients died
within two years of follow-up, but 2 patients (patients 9 and 10) could not be
followed-up for a full 2 years.
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Estimating the survival function, S(t) II

Consider the following table:

Interval At risk (l) Deaths (d) Censored (w) S(t)
[0, 1) 35 8 0 1-8/35
[1, 2) 27 2 2 ?

We could exclude these two patients from the analysis altogether and let
Ŝ(2) = (33 − 10)/33, but this will underestimate the true survival proportion
since it ignores the fact that each of these two patients were at risk of death
for between one and two years but did not die while under observation.
If we instead use Ŝ(2) = (35 − 10)/35 then we will overestimate the true
survival proportion, since we are assuming that each of these two patients
survived for a full two years.
Two common (and similar) methods for estimating S(t) in the presence of
censoring are the the Kaplan-Meier (product-limit) method and the actuarial
(life-table) method.
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The general approach to nonparametric estimation of S(t)
I

Assume we wish to estimate five year survival, S(5).
-p1 p2 p3 p4 p5

0 1 2 3 4 5 time

We start by estimating the following conditional survival probabilities:
p1, the probability of surviving at least 1 year from time 0
p2, the probability of surviving at least 2 years conditional on surviving 1 year
p3, the probability of surviving at least 3 years conditional on surviving 2 years
p4, the probability of surviving at least 4 years conditional on surviving 3 years
p5, the probability of surviving at least 5 years conditional on surviving 4 years
The probability of surviving at least 5 years (from time zero) is then given by
the product of these conditional survival probabilities.

S(5) =
5∏

i=1
pi
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The general approach to nonparametric estimation of S(t)
II

That is, to survive five years, one must survive year 1, and year 2, . . . , and
year 5.
The advantage of this approach is that we can appropriately account for
censoring when estimating the probability of surviving a small time interval
(i.e. when estimating the conditional survival probabilities).
This approach is employed by both the actuarial (life-table) method and the
Kaplan-Meier (product-limit) method.
We chose to estimate conditional probabilities for one year intervals
(time-bands) but the intervals may be any width.
The primary differences between the Kaplan-Meier and actuarial methods is
the manner in which the default intervals are chosen (not really a difference
in theory) and the method for dealing with ties.
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Ties in survival data

If two individuals have the same survival time (time to event or time to
censoring), we say that the survival times are tied.
Many of the standard methods for survival analysis, such as the Kaplan-Meier
method and the Cox proportional hazards model, assume that survival time is
measured on a continuous scale and that ties are therefore rare.
In population-based survival analysis, however, ties are common.
For example, among the 9087 people diagnosed with colon carcinoma during
1985–1994, 490 died during the first month of follow-up and 542 during the
second month of follow-up (although there were no censorings during these
months since every individual had a potential follow-up time of at least 12
months).
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Summary: nonparametric estimation of S(t) I
1. Split follow-up into intervals (timebands). If there are both deaths and

censorings within an interval then (within the interval):
K-M Assume the events precede those censored, that is, everyone is at risk when

the events occur.
Actuarial Assume half of the censored individuals are at risk when the events occur.

2. Estimate conditional probabilities of surviving each interval

pi = 1 − di/ni

where di is the number of events and ni number at risk for interval i .
3. S(t) is the product of the conditional probabilities up to time t.

S(tk) =
k∏

i=1
pi
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Summary: nonparametric estimation of S(t) II

The only difference between the Kaplan-Meier method and the actuarial
method is the approach to dealing with ties (which affects the value of ni in
estimating the conditional probabilities).
The Kaplan-Meier approach is slightly biased in the presence of ties so one
should define time as accurately as possible (e.g. don’t use time in months if
you have time in days) to minimise the number of ties.
If survival times are generated on a truly discrete scale (e.g. patients are
contacted annually to ascertain vital status) and ties are common then the
actuarial approach is preferable.
The actuarial method can, however, also be used with many small intervals.
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Continuing the example

Kaplan-Meier method
At risk Deaths Censored

Interval (l) (d) (w) p S(t)
[0, 1) 35 8 0 1-8/35 1-8/35
[1, 2) 27 2 2 1-2/27 (1-2/27)×(1-8/35)

Actuarial method
At risk Deaths Censored

Interval (l) (d) (w) p S(t)
[0, 1) 35 8 0 1-8/35 1-8/35
[1, 2) 27 2 2 1-2/(27-2/2) (1-2/(27-2/2))×(1-8/35)
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The Kaplan-Meier method for estimating S(t) I

Also known as the product-limit method but is more commonly known as the
Kaplan-Meier method, after the two researchers who first published the
method in English in 1958 [6].
The method was published earlier (1912) in German [2].
In essence, the Kaplan-Meier method is the life table method where the
interval size is decreased towards zero so that the number of intervals tends
to infinity. Each life table interval is of infinitesimal length, just enough for
one event or time increment.
In practice, survival time is measured on a discrete scale (e.g. minutes, hours,
days, months, or years) so the interval length is limited by the accuracy by
which survival time is measured.
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The Kaplan-Meier method for estimating S(t) II

In practice, only those intervals containing an event contribute to the
estimate, so we can ignore all other intervals.
To estimate survival, the patient survival times are first ranked in increasing
order.
The times where events (deaths) occur are denoted by ti , where
t1 < t2 < t3 < . . ..
The number of deaths occurring at ti is denoted by di .
If both censoring(s) and death(s) occur at the same time, then the
censoring(s) are assumed to occur immediately after the death time.
That is, individuals with survival times censored at ti are assumed to be at
risk at ti .
The Kaplan-Meier estimate of the cumulative survival function at time t is
given by

Ŝ(t) =
{

1 if t < t1∏
ti ≤t(1 − di

li ) if t ≥ t1
(1)

where li is the number of persons at risk.
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The Kaplan-Meier method for estimating S(t) III

A plot of the Kaplan-Meier estimate of the survival function (slide 43) takes
the form of a step function, in which the survival probabilities decrease at
each death time and are constant between adjacent deaths times.
Censorings contribute in Equation 1 by decreasing li at the next death time.
If the largest observed survival time (which we will call tmax) is a censored
survival time (or times), then Ŝ(t) is undefined for t > tmax, otherwise
Ŝ(t) = 0 for t > tmax.
The standard error of the estimate can be obtained using Greenwood’s
method [5].
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K-M estimates for the sample data (up to 19 months)
at observed

t risk deaths pi S(t) SE
0 35 0 1.0000 1.0000 –
2 35 2 0.9429 0.9429 0.0392
3 33 1 0.9697 0.9143 0.0473
5 32 1 0.9688 0.8857 0.0538
7 31 1 0.9677 0.8571 0.0591
8 30 1 0.9667 0.8286 0.0637
9 29 1 0.9655 0.8000 0.0676

11 28 1 0.9643 0.7714 0.0710
13+ 27 0
14+ 26 0

19 25 1 0.9600 0.7406 0.0745

At t = 2 months we observed 2 deaths among the 35 patients at risk, so
p1 = 1 − 2/35 = 0.9428.
At t = 3 months we observed 1 death among the 33 patients at risk, so
p2 = 1 − 1/33 = 0.9697.
Subsequently, Ŝ(t) = 0.9429 × 0.9697 = 0.9143 for 3 ≤ t < 5.
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Survival analysis using R

Some of the R survival analysis functions relevant to this course are given
below. Further details can be found in the manuals or online help.

Function name Description
survival::survfit Kaplan-Meier survival curves
survival::survSplit Split time-span records
biostat3::survRate Tabulate failure rate
biostat3::muhaz2 Calculate smoothed hazards for single groups
biostat3::lifetab2 Calculate actuarial survival
stats::glm Estimate Poisson regression
survival::coxph Estimate Cox proportional hazards model
survival::cox.zph Test of Cox proportional hazards assumption
rstpm2::stpm2 Estimate generalised survival models
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Brief intro to the Surv function

In the survival package in R (and many other R packages), survival is
specified using the Surv() function. With two parameters, this represents
right-censored data. For example:
> Surv(c(10,15), c(TRUE,FALSE))
[1] 10 15+

This shows the survival time for two individuals, where the first individual had
an event at 10 (assuming a time unit of years) and the second had no event
after 15 years. The Surv function can also specify left- and interval-censored
data and left-truncated data.

Clements et al Biostatistics III, Day 1 4–13 November, 2024 63 / 89



Example

To calculate the Kaplan-Meier estimate of the cause-specific survival function
by sex at 120 months and to fit a Cox proportional hazards model with sex
and calendar period as covariates

R code
> fit = survfit(Surv(surv_mm,status=="Dead: cancer")~sex, data=colon)
> summary(fit, times=120)
> coxph(Surv(surv_mm,status=="Dead: cancer")~sex+year8594, data=colon)
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Kaplan-Meier estimates in R

R code and output
> colon_sample = transform(colon_sample,

dead=status != "Alive")
> fit = survfit(Surv(surv_mm, dead)~1, colon_sample)
> summary(fit)

Call: survfit(formula = Surv(surv_mm, dead) ~ 1, data = colon_sample)

time n.risk n.event survival std.err lower 95% CI upper 95% CI
2 35 2 0.943 0.0392 0.8690 1.000
3 33 1 0.914 0.0473 0.8261 1.000
5 32 1 0.886 0.0538 0.7863 0.998
7 31 1 0.857 0.0591 0.7487 0.981
8 30 1 0.829 0.0637 0.7127 0.963
9 29 1 0.800 0.0676 0.6779 0.944

11 28 1 0.771 0.0710 0.6441 0.924
19 25 1 0.741 0.0745 0.6080 0.902
22 24 1 0.710 0.0776 0.5729 0.879

[snip]
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Plotting Kaplan-Meier estimates of S(t) using R I

R code
> plot(fit, xlab="Time (months)", ylab="Survival",

conf.int=FALSE)
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Plotting Kaplan-Meier estimates of S(t) using R II

R code
> fit = survfit(Surv(surv_mm,dead)~stage, data=colon)
> plot(fit, xlab="Time (months)",

ylab="Survival", lty=1:4, col=1:4)
> legend("topright", legend=levels(colon$stage), lty=1:4, col=1:4, bty="n")
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Confidence intervals for estimated survival proportions I

Confidence intervals can be calculated for any estimated survival proportion in
order to provide a measure of uncertainty associated with the point estimate.
A 95% confidence interval (CI) is an interval, i.e. a range of values, such that
under repeated sampling, the true survival proportion will be contained in the
interval 95% of the time (if the model is correct).
The CI is often called an interval estimate for the true survival proportion,
while the estimated survival proportion is called the point estimate.
Estimated confidence intervals provide an indication of the level of statistical
uncertainty in the estimated survival proportions. They do not represent the
range of possible prognoses for an individual patient.
A confidence interval for the true survival proportion can be obtained by
assuming that the estimated survival proportion is normally distributed
around the true value with estimated variance given by the square of the
standard error.
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Confidence intervals for estimated survival proportions II

A two-sided 100(1 − α)% confidence interval ranges from p − zα/2SE(p) to
p + zα/2SE(p), where p is the estimated survival proportion (which can be an
interval-specific or cumulative observed, cause-specific, or relative survival),
SE(p) the associated standard error, and zα/2 the upper α/2 percentage
point of the standard normal distribution.
The standard error of the observed and cause-specific survival proportion can
be obtained using Greenwood’s method.
As a rule of thumb, the normal approximation for a single interval i is usually
appropriate when both l ′

i pi and l ′
i (1 − pi) are greater than or equal to 5 [1].

Confidence intervals obtained in this way are symmetric about the point
estimate and can sometimes contain implausible values for the survival
proportion, i.e. values less than zero or greater than one.
The usual approach is to construct the confidence intervals on the log
cumulative hazard scale and then back-transform.
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Life table method for estimating S(t) I

Also known as the ‘actuarial method’. The approach is to divide the period of
observation into a series of time intervals and estimate the conditional
(interval-specific) survival proportion for each interval.
The cumulative survival function, S(t), at the end of a specified interval is
then given by the product of the interval-specific survival proportions for all
intervals up to and including the specified interval.
In the absence of censoring, the interval-specific survival proportion is
p = (l − d)/l , where d is the number of events (deaths) observed during the
interval and l is the number of patients alive at the start of the interval.
In the presence of censoring, it is assumed that censoring occurs uniformly
throughout the interval such that each individual with a censored survival
time is at risk for, on average, half of the interval. This assumption is known
as the actuarial assumption.
The effective number of patients at risk during the interval is given by
l ′ = l − 1

2 w where l is the number of patients alive at the start of the interval
and w is the number of censorings during the interval.
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Life table method for estimating S(t) II

The estimated interval-specific survival proportion is then given by
p = (l ′ − d)/l ′.
The actuarial estimate of the cumulative survival function at time t is given
by

Ŝ(t) =
{ 1 if t < t1∏

ti ≤t(1 − di
li −wi /2 ) if t ≥ t1

(2)

For the first interval, l = l ′ = 35 and p = (35 − 8)/35 = 0.771. The
estimated 1-year survival proportion is therefore Ŝ(1) = 0.771.
For the second interval, l ′ = 27 − 1

2 × 2 = 26 and p = (26 − 2)/26 = 0.923.
The estimated 2-year survival proportion is then
Ŝ(2) = 0.771 × 0.923 = 0.71209.
The cumulative survival estimated is estimated as the product of conditional
survival proportions, where the estimate of each conditional survival
proportion is based upon only those individuals under follow-up.
That is, the individuals who are censored are assumed to have the same
prognosis as those individuals who could be followed up.
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Life table method for estimating S(t) III
This requires the assumption that censoring is non-informative.
That is, we make the assumption that, conditional on the values of any
explanatory variables, censoring is unrelated to prognosis (the probable course
and outcome of the disease).
If censoring was informative, for example if censored were more likely to die,
then we would be left with healthier patients in the study, showing a better
survival than the true survival of the patients.
In the first exercise you will construct (by hand) a life table on these same
data but with death due to cancer as the outcome.
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Life table method for estimating S(t) IV
time l d w l ′ p S(t)
[0-1) 35 8 0 35.0 0.77143 0.77143
[1-2) 27 2 2 26.0 0.92308 0.71209
[2-3) 23 5 4 21.0 0.76190 0.54254
[3-4) 14 2 1 13.5 0.85185 0.46217
[4-5) 11 0 1 10.5 1.00000 0.46217
[5-6) 10 0 0 10.0 1.00000 0.46217
[6-7) 10 0 3 8.5 1.00000 0.46217
[7-8) 7 0 1 6.5 1.00000 0.46217
[8-9) 6 2 3 4.5 0.55556 0.25676
[9-10) 1 0 1 0.5 1.00000 0.25676

l is the number alive at the start of the interval
d is the number of events (deaths) during the interval
w is the number of censorings (withdrawals) during the interval
l ′ is the effective number at risk for the interval
p is the interval-specific survival proportion
S(t) is the estimated cumulative survival function (proportion) at the end of the
interval
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Other measures of survival: Median survival time I

The median survival time is another measure used to summarise the survival
experience of the patients.
The median survival time is the time at which S(t) = 0.5. That is, the time
beyond which 50% of the individuals in the population are expected to
survive.
It is estimated by the time at which the estimate of S(t) falls below 0.5.
The median survival time for the example shown on the next slide is
approximately 3.5 years.
The median can be estimated by extrapolation if the survival function does
not sink below 0.5 during the period the patients are under follow-up.
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Other measures of survival: Median survival time II
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Testing for differences in survival – Summary of key points

Various tests are available for testing equality of survival curves, the most
well-known being the log rank test.
These tests are rarely used in observational epidemiology; we prefer to use
modelling since it:

1 provides estimates of the size of the effect (i.e. rate ratios); the log-rank test
just gives a p-value;

2 provides greater possibilities for confounder control and effect modification.
The log-rank test assumes proportional hazards.
Consider the situation where we have two groups; a Cox model with one
explanatory variable gives us everything the log-rank test does (a p-value). It
also gives us the estimated hazard ratio and CI but, more importantly, it is
simple to extend the model to compare survival between the two groups while
controlling for potential confounders.
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Testing for differences in survival between groups I

Comparing survival at a fixed time point (e.g. five years) wastes available
information.
It is invalid to compare the proportion surviving at a given time, based on the
comparison of two binomial proportions, where the time point for comparison
is chosen after viewing the estimated survival functions (e.g. testing for a
difference at the point where the Kaplan-Meier curves show the largest
difference).
Various tests are available (parametric and non-parametric) for testing
equality of survival curves. The most common is the log rank test, which is
non-parametric.
Start by tabulating the number at risk in each group and the total number of
events (deaths) at every time point when one of more deaths occur.
Under the null hypothesis that the two survival curves are the same, the
expected number of deaths in each group will be proportional to the number
at risk in each group.
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Testing for differences in survival between groups II
For example (see slide 80), at t = 2 months we observed 2 deaths (one male
and one female). Conditional on 2 deaths being observed, we would expect
2 × 19/35 = 1.086 deaths among the 19 males at risk and 2 × 16/35 = 0.914
deaths among the 16 females at risk.
Now calculate the totals of the observed and expected number of deaths for
each group (1=males, 2=females), calling them O1, O2, E1, and E2, and
calculate the following test statistic

θ = (O1 − E1)2

E1
+ (O2 − E2)2

E2
. (3)
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Testing for differences in survival between groups III

Under the null hypothesis, θ will approximately follow a χ2 distribution with 1
degree of freedom. That is, if θ is greater than 3.84 then we reject the null
hypothesis and conclude that there is a statistically significant difference
between the two survival curves.
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Log rank test for comparing survival of males and females I
event males females
time at risk obs exp at risk obs exp

2 19 1 1.086 16 1 0.914
3 18 1 0.545 15 0 0.455
5 17 1 0.531 15 0 0.469
7 16 1 0.516 15 0 0.484
8 15 1 0.500 15 0 0.500
9 14 0 0.483 15 1 0.517

11 14 0 0.500 14 1 0.500
19 13 0 0.520 12 1 0.480
22 13 1 0.542 11 0 0.458
27 12 0 0.545 10 1 0.455
28 11 0 0.550 9 1 0.450
32 11 2 1.158 8 0 0.842
33 9 1 0.563 7 0 0.438
43 8 0 0.615 5 1 0.385
46 8 1 0.667 4 0 0.333

102 2 0 0.500 2 1 0.500
103 2 1 0.667 1 0 0.333

Totals: O1 = 11, E1 = 10.488, O2 = 8, E2 = 8.512
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Log rank test for comparing survival of males and females
II

The test statistic is θ = (O1 − E1)2/E1 + (O2 − E2)2/E2 = 0.056, which is
less than 3.84 implying no evidence of a difference in survival between males
and females.
For k groups, the log rank test statistic is

θ =
k∑

i=1

(Oi − Ei)2

Ei
(4)

which has an approximate χ2
k−1 distribution under the null hypothesis.

The log rank test is designed to be sensitive to departures from the null
hypothesis in which the two hazards (instantaneous death rates) are
proportional over time. It is very insensitive to situations in which the hazard
functions cross.
The log rank test puts equal weight on every failure (irrespective of the
number at risk at the time of the failure).
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Log rank test for comparing survival of males and females
III

An alternative test, the generalised Wilcoxon test, is constructed by
weighting the contribution of each failure time by the total number of
individuals at risk and is consequently more sensitive to differences early in
the follow-up period (when the number at risk is larger).
The Wilcoxon test is more powerful than the log rank test if the proportional
hazards assumption does not hold.
It is difficult to apply the log rank test while simultaneously controlling for
potential confounding variables (a regression approach is preferable).
In a randomised clinical trial, however, potential confounders are controlled
for in the randomisation, so we can use the log rank test to compare survival
curves for the different treatment groups.
The log rank test provides nothing more than a test of statistical significance
for the difference between the survival curves, it tells us nothing about the
size of the difference. A regression approach allows us to both determine
statistical significance and to estimate the size of the effect.
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Log rank test in R

R code and output
> survdiff(Surv(surv_mm, dead)~sex, colon_sample)

Call:
survdiff(formula = Surv(surv_mm, dead) ~ sex, data = colon_sample)

N Observed Expected (O-E)^2/E (O-E)^2/V
sex=Male 19 11 10.49 0.0250 0.057
sex=Female 16 8 8.51 0.0309 0.057

Chisq= 0.1 on 1 degrees of freedom, p= 0.811

The log rank test is non-significant (p-value 0.811) indicating no difference in
survival between males and females (if the model is correct – such that there
is no uncontrolled confounding).
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The same test as a Cox model

R code and output
> coxph(Surv(surv_mm, dead)~sex, colon_sample)

Call:
coxph(formula = Surv(surv_mm, dead) ~ sex, data = colon_sample)

coef exp(coef) se(coef) z p
sexFemale -0.116 0.891 0.467 -0.25 0.8

Likelihood ratio test=0.06 on 1 df, p=0.804
n= 35, number of events= 19
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Summary of Day 1 I
Time-to-event analysis (survival analysis) is necessary when

We are interested in studying the time to an event, e.g. time to diagnosis,
time to death
Individuals in a study are followed for different lengths of time, and therefore
are ‘at risk’ for different amounts of time, e.g. in cohort studies.

The outcome in survival analysis consists of both an event indicator (0/1)
and a time dimension (continuous).
The outcome can be expressed as either a survival proportion or an event rate
(hazard). Comparison between groups are primarily made using hazard ratios.
The survival function (survival proportion) can be estimated using several
alternative methods.
The log rank test can be used to test for differences in survival, but is rarely
used in observational epidemiology.
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Summary of Day 1 II

In observational epidemiology we prefer modelling since it:
enables us to compare survival between exposure categories while controlling
for confounding (although we can also perform an adjusted log rank test).
places a focus on estimation rather than testing (i.e. we obtain estimated
hazard ratios and CIs).
enables us to study effect modification.
is extendable in other useful ways.
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Exercises for Monday afternoon

1a. Hand calculation: Kaplan-Meier estimates of cause-specific survival (35
patients)

1b. Kaplan-Meier estimates of cause-specific survival using R (35 patients)
2. Melanoma: Comparing survival proportions and mortality rates according to

stage
3. Localised melanoma: Comparing estimates of cause-specific survival between

periods; first graphically and then using the log rank test
4. Localised melanoma: Comparing various approaches to estimating the

10-year survival proportion
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